日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點DBE HOEG的中點,對于下面四個結論:①GHBE;②OHBG,且;③;④△EBG的外接圓圓心和它的內切圓圓心都在直線HG上.其中表述正確的個數是( )

A.1B.2C.3D.4

【答案】D

【解析】

①由四邊形ABCD是正方形,ECG是等腰直角三角形,得出BCE≌△DCG,推出∠BEC+HDE=90°,從而得出GHBE;

②由GH是∠EGC的平分線,得出BGH≌△EGH,再由OEG的中點,利用中位線定理,得出OHBG,且;

③由(2)得BG=EG,設CG=x,則CE=x,根據勾股定理得EG=x,所以BG=x,從而得到BC=(-1)x,根據正方形面積公式和等腰直角三角形面積公式可以得到S正方形ABCD=(3-2)x2,SECG=x2,進而求出

④三角形的外接圓的圓心是三條邊的垂直平分線的交點,三角形的內切圓是的圓心是三個角的平分線的交點.由(2)得BG=EG,由(1)得GHBE,因為GH平分∠BGE,所以GHBE邊上的垂直平分線,所以EBG的外接圓圓心和內切圓圓心在直線HG上.

解:①∵四邊形ABCD是正方形,ECG是等腰直角三角形

BC=CD,CE=CG,∠BCE=DCG=90°

BCEDCG中,

BCE≌△DCGSAS

∴∠BEC=BGH

∵∠BGH+CDG=90°,∠CDG=HDE

∴∠BEC+HDE=90°

GHBE

故①正確;

②∵GH是∠EGC的平分線

∴∠BGH=EGH

在△BGH和△EGH中,

∴△BGH≌△EGHASA

BH=EH

OEG的中點

HO是△EBG的中位線

OHBG,且

故②正確;

③由(2)得△BGH≌△EGH

BG=EG

在等腰直角三角形ECG中,設CG=x,則CE=x

EG==x

BG=x

BC=BG-CG=x-x=(-1)x

S正方形ABCD=BC2=[(-1)x]2 =(3-2)x2

SECG=CGCE=x2

S正方形ABCDSECG=(3-2)x2x2=(6-4)1

故③正確;

④由(2)得BG=EG,由(1)得GHBE

GH平分∠BGE

GHBE邊上的垂直平分線

∵三角形的外接圓的圓心是三條邊的垂直平分線的交點,三角形的內切圓是的圓心是三個角的平分線的交點.

EBG的外接圓圓心和內切圓圓心在直線HG

故④正確.

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為的網格中,點均在格點上,為小正方形邊中點.

1的長等于 ______

2)請在如圖所示的網格中,用無刻度的直尺,畫出一個點,使其滿足說明點的位置是如何找到的(不要求證明)______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點,設該拋物線與x軸的另一個交點為A,頂點為D,連接CDx軸于點E

1)求該拋物線的函數表達式;

2)求該拋物線的對稱軸和D點坐標;

3)點FG是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;

4)連接BD,若Py軸上,且∠PBC=DBA+DCB,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD邊長為4,∠A60°,MAD邊的中點,NAB邊上一動點,將△AMN沿MN所在的直線翻折得到△AMN,連接AC,則AC的最小值是(

A.2B.+1C.22D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖,AD與地面的夾角為60°,為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°變成37°,因此傳送帶的落地點由點B到點C向前移動了2.

1)求點A與地面的高度;

2)如果需要在貨物著地點C的左側留出2米,那么請判斷距離D14米的貨物2是否需要挪走,并說明理由.sin37°≈0.6,cos37°≈0.8tan37°≈0.75,≈1.73

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小張用4張相同的小紙條做成甲、乙、丙、丁4支簽,放在一個盒子中,攪勻后先從盒子中任意抽出1支簽(不放回),再從剩余的3支簽中任意抽出1支簽.

(1)小張第一次抽到的是乙簽的概率是 ;

(2)求抽出的兩支簽中,1支為甲簽、1支為丙簽的概率(用畫樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為8,點E是正方形內部一點,連接BE,CE,且∠ABE=∠BCE,點PAB邊上一動點,連接 PDPE,則PD+PE長度的最小值為(

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線yx2bxc過點A(3, 0)、點B(0, 3).點M(m, 0)在線段OA上(與點A、O不重合),過點Mx軸的垂線與線段AB交于點P,與拋物線交于點Q,聯結BQ

1)求拋物線表達式;

2)聯結OP,當∠BOP=∠PBQ時,求PQ的長度;

3)當PBQ為等腰三角形時,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形頂點在函數的圖象上,函數的圖象關于直線對稱,且經過點兩點,若,,則的值為________

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99九九久久| 亚洲欧美另类在线观看 | 日韩精品在线一区 | 国产精品欧美一区二区三区 | 激情五月婷婷综合 | 国产精品久久久久蜜臀 | 精品国产鲁一鲁一区二区三区 | 成人亚洲在线观看 | 一区二区久久久 | 亚洲人免费视频 | 日本久久久一区二区三区 | 成人不卡在线 | 精品国产91久久 | 亚洲福利网站 | 欧美一区二区在线观看 | 亚洲国产精品免费 | 亚洲蜜桃精久久久久久久 | 草久视频 | 九九热在线免费视频 | 在线高清av | 欧美久久精品一级c片 | www.四虎.com| 青青久久av北条麻妃海外网 | 国产精品一区二区三区在线播放 | 日韩二区三区 | 青青青久草 | 精品国产乱码久久久久久蜜柚 | 精品999| 日韩黄色在线 | 四虎8848精品成人免费网站 | 天天操天天草 | 日韩精品区 | 日本在线视频一区二区三区 | 欧美成人在线免费视频 | 精品一区二区电影 | 日韩免费久久 | 精品伊人 | 精品国产999 | 国产毛片在线 | 在线亚洲一区 | 一区中文字幕 |