
解:當扇形的圓心角為120°時,△ABC與扇形重疊部分的面積,總等于△ABC的面積的

.
證明如下:
(1)當扇形的圓心角與正三角形的中心角重合時:
顯然,△ABC與扇形重疊部分的面積等于△ABC的面積的

;
(2)當扇形的圓心角與正三角形的中心角不重合時:
如圖,連接OA、OB,設OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,
∠AOB=

×360°=120°(等邊三角形的中心角等于

),
∴∠AOF=∠AOB-∠BOF=120°-∠BOF,

∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中

,
∴△AOF≌△BOG(ASA),
即S
四邊形OFBG=S
△AOB=

S
△ABC,
即△ABC與扇形重疊部分的面積,總等于△ABC的面積的

,
同理可證,當扇形ODE旋轉至其他位置時,結論仍成立.
由(1)、(2)可知,當扇形的圓心角為120°時,△ABC與扇形重疊部分的面積,總等于△ABC的面積的

.
分析:因為重疊部分總等于三角形面積的

,可以先從三角形考慮,O為中心也就是與正三角形的中心角重合,所以應為120°,證明是要分兩種情況:即特殊和一般,特殊情況時就是猜想所用的情況,顯然成立,一般情況的證明從三角形全等把四邊形的面積分解成兩個三角形,最后再歸到正三角形的中心角為120°的三角形.
點評:本題考查了全等三角形的判定與性質及等邊三角形的性質;猜想時從三角形考慮是解答本題的突破點,證明時一般情況的證明容易被學生忽視.