【題目】如圖,矩形中,
,
,
、
分別是邊
、
上的點,
且
與
之間的距離為4,則
的長為( )
A. 3B. C.
D.
【答案】D
【解析】
過點D作DG⊥BE,垂足為G,則GD=4=AB,∠G=90°,再利用AAS證明△AEB≌△GED,根據全等三角形的性質可得AE=EG. 設AE=EG=x,則ED=5﹣x,在Rt△DEG中,由勾股定理得可得方程x2+42=(5﹣x)2, 解方程求得x的值即可得AE的長.
過點D作DG⊥BE,垂足為G,如圖所示:
則GD=4=AB,∠G=90°,
∵四邊形ABCD是矩形,
∴AD=BC=5,∠A=90°=∠G,
在△AEB和△GED中,
∴△AEB≌△GED(AAS).
∴AE=EG.
設AE=EG=x,則ED=5﹣x,
在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,
∴x2+42=(5﹣x)2,
解得:x=,即AE=
.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,O是等邊△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:
①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;&
②點O與O′的距離為4;
③∠AOB=150°;
④四邊形AOBO′的面積為6+3 ;
⑤S△AOC+S△AOB=6+.
其中正確的結論是_______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于C,OC平分∠AOB.
(1)求∠AOB的度數;
(2)若線段CD的長為2cm,求的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程,
(1)求證:該一元二次方程總有兩個實數根;
(2)若該方程只有一個小于4的根,求m的取值范圍;
(3)若x1,x2為方程的兩個根,且n=x12+x22﹣4,判斷動點所形成的數圖象是否經過點
,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(﹣5,0)、(﹣2,0).點P在拋物線y=﹣2x2+4x+8上,設點P的橫坐標為m.當0≤m≤3時,△PAB的面積S的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,一次函數的圖象
分別與
,
軸交于
,
兩點,正比例函數的圖象
與
交于點
.
(1)求的值及
的解析式;
(2)求的值;
(3)一次函數的圖象為
,且
,
,
不能圍成三角形,直接寫出
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子里有5個小球,分別標有數字﹣3,﹣2,﹣1,﹣,﹣
,這些小球除所標的數不同外其余都相同,先從盒子隨機摸出1個球,記下所標的數,再從剩下的球中隨機摸出1個球,記下所標的數.
(1)用畫樹狀圖或列表的方法求兩次摸出的球所標的數之積不大于1的概率.
(2)若以第一次摸出球上的數字為橫坐標,第二次摸出球上的數字為縱坐標確定一點,直接寫出該點在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,的頂點均在格點上,點A的坐標為
,點B的坐標為
,點C的坐標為
.
(1)以點C為旋轉中心,將旋轉
后得到
,請畫出
;
(2)平移,使點A的對應點
的坐標為
,請畫出
;
(3)若將繞點P旋轉可得到
,則點P的坐標為___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com