拋物線y=ax2和y=-ax2在同一坐標系內,下面結論正確的是( )
A
.頂點坐標不同 B.對稱軸相同 C.開口方向一致 D.都有最低點科目:初中數學 來源: 題型:
如圖1,在平面直角坐標系中,已知點M的坐標是(3,0),半徑為2的⊙M交x軸于E、F
兩點,過點P(-1,0)作⊙M的切線,切點為點A,過點A作AB⊥x軸于點C,交⊙M于
點B。拋物線y=ax2+bx+c經過P、B、M三點。
1.(1)求該拋物線的函數表達式;(3分)
2.(2)若點Q是拋物線上一動點,且位于P、B兩點之間,設四邊形APQB的面積為S,點Q的
橫坐標為x,求S與x之間的函數關系式,并求S的最大值和此時點Q的坐標;(4分)
3.(3)如圖2,將弧AEB沿弦AB對折后得到弧AE′B,試判斷直線AF與弧AE′B的位置關系,
并說明理由。(3分)
查看答案和解析>>
科目:初中數學 來源:2012屆江西宜春高安市中考二模數學試卷(帶解析) 題型:解答題
如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
【小題1】求拋物線的解析式;
【小題2】設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
【小題3】如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時的點E的坐標.
查看答案和解析>>
科目:初中數學 來源:2011年福建省晉江市初一上學期末數學卷 題型:解答題
已知拋物線y=ax2+bx+c經過A(-4,3)、B(2,0)兩點,當x=3和x=-3時,這條拋物線上對應點的縱坐標相等.經過點C(0,-2)的直線l與 x軸平行,O為坐標原點.
(1)求直線AB和這條拋物線的解析式;
(2)以A為圓心,AO為半徑的圓記為⊙A,判斷直線l與⊙A的位置關系,并說明理由;
(3)設直線AB上的點D的橫坐標為-1,P(m,n)是拋物線y=ax2+bx+c上的動點,當△PDO的周長最小時,求四邊形CODP的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com