日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD。
【小題1】如圖1,以AB為邊在△ABC外作等腰△ABE,其中AB=AE,,試證明BD=CE;
【小題2】如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4,求BD的長;
【小題3】如圖3,若∠ACB為銳角,作AH⊥BC于H,當BD2=4AH2+BC2時,問∠DAC與∠ABC有怎樣的關系,直接寫出結論(不需要證明)。

【小題1】∵∠BAE=∠CAD
∴∠CAE=∠BAD
∵AE=AB,AC=AD,
∴△ACE≌△ABD
∴BD=CE…….………………………………………………………………5分
【小題2】如圖2,以A為頂點AB為邊在外作=60°,并在AE上取AE=AB,連結BE和CE.                  ……………………………………7分

是等邊三角形,
∴AD=AC,=60°.
=60°,
+=+.
=.
.   ………………8分                                                                              
∴EC=BD.
=60°,AE=AB=3,
是等邊三角形,
="60°," EB= 3, …………………9分
,
.
,EB=3,BC=4,
∴EC=5.
∴BD=5.             ……………………10分
【小題3】=2.       ……………………12分                              
附:證明:
如圖3,過點B作BE∥AH,并在BE上取BE=2AH,連結EA,EC. 并取BE的中點K,連結AK.

于H,  ∴.  ∵BE∥AH,  ∴.
,BE=2AH,  ∴.
,  ∴EC=BD.
∵K為BE的中點,BE=2AH,  ∴BK=AH.
∵BK∥AH,  ∴四邊形AKBH為平行四邊形.
又∵,  ∴四邊形AKBH為矩形.  ∴.
∴AK是BE的垂直平分線.  ∴AB=AE.
∵AB=AE,EC=BD,AC=AD,  ∴.                       
.  ∴.
.  ∵為銳角,  ∴.
∵AB=AE,  ∴.  ∴.  ∴=2.
=2  解析:
(1)由AC=AD得∠D=∠ACD,由平行四邊形的性質得∠D=∠ABC,在△ACD中,由內角和定理求解;
(2)如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉法證明△EAC≌△BAD,可證∠EBC=90°,BE=AB=3,在Rt△BCE中,由勾股定理求CE,由三角形全等得BD=CE;
(3)∠DAC=2∠ABC成立,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK,仿照(2)利用旋轉法證明△EAC≌△BAD,利用內角和定理證明結論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

25、已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=
45°

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H.當BD2=4AH2+BC2時,∠DAC=2∠ABC是否成立?若不成立,請說明你的理由;若成立,證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若AB=AE,∠DAC=∠EAB=60°,則∠BFC=
120°
120°

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,BC=4,AB=3.求BD的長;
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H,當BD2=4AH2+BC2時,判定∠DAC與∠ABC的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•順義區一模)如圖,已知△ABC,以AC為直徑的⊙O交AB于點D,點E為
AD
的中點,連結CE交AB于點F,且BF=BC.
(1)判斷直線BC與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為2,cosB=
3
5
,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,△ACB≌△DAC,則∠ABC=
45
45
°;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,AD∥BC,則∠ABC=
45°
45°

(2)如圖2,以A為頂點AB為邊在△ABC外作∠BAM=60°,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久国产视频一区二区 | 草久久久 | 国产不卡在线观看 | 超碰在 | 欧美视频三区 | av日韩在线免费观看 | 中文字幕日韩欧美 | 欧洲一区在线观看 | 久久国产精品精品国产 | 精品国产乱码久久久久久丨区2区 | 亚洲精品久久久 | 国产一区二区三区在线免费观看 | 欧美精品成人 | 日韩激情一区二区 | 91精品国产高清久久久久久久久 | 久久久毛片 | 99精品国产在热久久 | 久久成人综合网 | 亚洲一区二区三区免费在线观看 | 天天色天天看 | 精品一区二区三区免费 | 久久精品无码一区二区日韩av | 日本在线观看一区二区 | 中文字幕播放 | 91精品国产一区二区三区蜜臀 | 日韩福利 | 亚洲精品国产精品乱码不99按摩 | 久久久精品高清 | 中文精品在线 | 毛片a片 | 亚洲国产精品人人爽夜夜爽 | 国产在线一区二区三区 | 精品久久中文 | 一级a性色生活片久久毛片波多野 | 久久精品一区视频 | 在线观看国产一区 | 亚洲一区视频在线 | 婷婷天堂网 | 91九色最新 | 久久亚洲高清 | 日韩在线精品视频 |