日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2008•南平)如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,)(其中m>0),在BC邊上選取適當的點E和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).

【答案】分析:(1)根據折疊的性質可知:AB=AG=OG=,而OA=BC=m,那么在直角三角形OGA中即可用勾股定理求出m的值.
(2)由于△OGA是個等腰直角三角形,已知了OA的長,因此不難求出G點的坐標,根據O,A,G三點的坐標即可用待定系數法求出拋物線的解析式.
(3)本題要分情況進行討論:
①當OP=PG,那么P點為OG的垂直平分線與拋物線對稱軸的交點.因此P與H重合,P點坐標為(1,0)
②當OP=OG,那么△OPG為等腰直角三角形因此GH=PH=1,P點坐標為(1,-1).
③當GP=OG時,GP=,因此P點的坐標為(1,1+),(1,1-).(在G點上下各有一點)

解答:解:(1)解法一:∵B(m,),
由題意可知AG=AB=,OG=OC=,OA=m(2分)
∵∠OGA=90°,
∴OG2+AG2=OA2
∴2+2=m2
又∵m>0,
∴m=2.
解法二:∵B(m,),
由題意可知AG=AB=,OG=OC=,OA=m
∵∠OGA=90°,
∴∠GOA=∠GAO=45°
∴m=OA==2.

(2)解法一:過G作直線GH⊥x軸于H,
則OH=1,HG=1,故G(1,1).
又由(1)知A(2,0),
設過O,G,A三點的拋物線解析式為y=ax2+bx+c
∵拋物線過原點,
∴c=0.
又∵拋物線過G,A兩點,

解得,
∴所求拋物線為y=-x2+2x,
它的對稱軸為x=1.
解法二:過G作直線GH⊥x軸于H,
則OH=1,HG=1,故G(1,1).
又由(1)知A(2,0),
∴點A,O關于直線l對稱,
∴點G為拋物線的頂點.
于是可設過O,G,A三點的拋物線解析式為y=a(x-1)2+1,
∵拋物線過點O(0,0),
∴0=a(0-1)2+1,
解得a=-1,
∴所求拋物線為y=(-1)(x-1)2+1=-x2+2x
它的對稱軸為x=1.

(3)答:存在
滿足條件的點P有(1,0),(1,-1),(1,1-),(1,1+).
點評:本題著重考查了待定系數法求二次函數解析式、圖形翻折變換、三角形全等等知識點,綜合性較強,考查學生分類討論,數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年重慶市綦江縣趕水中學學模擬測試數學試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,)(其中m>0),在BC邊上選取適當的點E和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).

查看答案和解析>>

科目:初中數學 來源:2009年浙江省紹興市紹興縣蘭亭鎮中數學中考模擬試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,)(其中m>0),在BC邊上選取適當的點E和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).

查看答案和解析>>

科目:初中數學 來源:2009年廣東省茂名十中初中數學綜合練習試卷(6)(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,)(其中m>0),在BC邊上選取適當的點E和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).

查看答案和解析>>

科目:初中數學 來源:2008年福建省南平市中考數學試卷(解析版) 題型:解答題

(2008•南平)如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,)(其中m>0),在BC邊上選取適當的點E和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩精品久久久免费观看夜色 | 自拍偷拍第一页 | 国产1区2区3区| 日本美女一区二区 | 亚洲一区高清 | 欧美精品久久 | 免费人成在线观看网站 | 久久r免费视频 | 欧美一级二级视频 | 毛片在线免费 | 一区二区日韩精品 | 久久99精品久久久久久水蜜桃 | 日韩专区一区二区三区 | 在线观看成人小视频 | 国产韩国精品一区二区三区 | 欧美日韩国产综合网 | 国产免费黄网站 | 欧美 日韩 亚洲 一区 | 久久三区 | 久久夜夜操妹子 | 亚洲tv国产 | 少妇久久久 | 日本五月婷婷 | 91欧美 | 超碰国产在线 | 国产在线拍偷自拍观看视频网站 | 日韩在线一区二区 | 五月婷婷久久久 | 欧美一级毛片久久99精品蜜桃 | 色999精品| 精一区二区 | 欧美成人一级片 | 成人欧美一区二区三区在线湿哒哒 | 午夜在线电影 | 色婷婷久久久swag精品 | 国产无区一区二区三麻豆 | 欧美一区久久 | 在线免费看黄网站 | 成人午夜激情 | 欧美亚洲视频 | 欧美日韩一区二区三区不卡视频 |