
(1)證明:設AG交MN于O,則
∵A、G關于BM對稱,
∴AO=GO,AG⊥MN.
∵E、F分別是矩形ABCD中AB、CD的中點,
∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG與MN互相平分且互相垂直.
∴四邊形ANGM是菱形.
(2)解:連接AF,
∵AD∥EF∥BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又∵EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴在Rt△PFD中,根據勾股定理得:PA=PF=

,
解得:PA=

.
分析:(1)設AG交MN于O,由題意易得AO=GO,AG⊥MN,要證四邊形ANGM是菱形,還需證明OM=ON,又可證明AD∥EF∥BC.∴MO:ON=AO:OG=1:1,∴MO=NO;
(2)連接AF,由題意可證得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=

,求得PA=

.
點評:本題主要考查菱形和平行四邊形的識別及推理論證能力.對角線互相垂直平分的四邊形是菱形.