【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于點E,AE平分∠BAC,AO=CO,AD=DC=2,下面結論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】試題分析:∵AD∥BC,AE∥CD,
∴四邊形AECD是平行四邊形.
∵AD=DC,
∴四邊形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠3.
∵∠1=∠2,
∴∠1=∠2=∠3.
∵∠ABC=90°,
∴∠1+∠2+∠3=90°,
∴∠1=∠2=∠3=30°,
∴BE=AE=1,AC=2AB.①正確;
在Rt△ABE中,由勾股定理,得
AB==
=
,②正確;
∵O是AC的中點,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠3=30°,
∴∠BAO=60°,
∴△ABO為等邊三角形.
∵∠1=∠2,
∴AE⊥BO.④正確;
∵S△ADC=S△AEC=AB·CE ,S△ABE=
AB·BE,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=AB·2BE
=2×AB·BE ,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.③正確.
∴正確的個數有4個.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點E,H為BC上一點,且BH=BA交AC于點F,連接FH.
⑴求證:AE=FH;
⑵作EG//BC交AC于點G若AG=5,AC=8,求FG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F為AB的中點,DE,AB相交于點G,若∠BAC=30°,下列結論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結論的序號是( 。
A. ②④ B. ①③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,菱形OABC的OC邊落在x軸上,∠AOC=60°,OA=60.若菱形OABC內部(邊界及頂點除外)的一格點P(x,y)滿足:x2﹣y2=90x﹣90y,就稱格點P為“好點”,則菱形OABC內部“好點”的個數為( )
(注:所謂“格點”,是指在平面直角坐標系中橫、縱坐標均為整數的點.)
A. 145 B. 146 C. 147 D. 148
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列調查中,適合于全面調查方式的是( 。
A.調查春節聯歡晚會的收視率B.調查某班學生的身高情況
C.調查一批節能燈的使用壽命D.調查某批次汽車的抗撞能力
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD
其中正確結論的為______(請將所有正確的序號都填上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°.
(1)如圖1,點E為線段AB的中點,連接DE,CE,若AB=4,求線段EC的長;
(2)如圖2,M為線段AC上一點(M不與A,C重合),以AM為邊,構造如圖所示等邊三角形AMN,線段MN與AD交于點G,連接NC,DM,Q為線段NC的中點,連接DQ,MQ,求證:DM=2DQ.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com