【題目】某圖書館計劃選購甲、乙兩種圖書.甲圖書每本價格是乙圖書每本價格的2.5倍,如果用900元購買圖書,則單獨購買甲圖書比單獨購買乙圖書要少18本.
(1)甲、乙兩種圖書每本價格分別為多少元?
(2)如果該圖書館計劃購買乙圖書的本數比購買甲圖書本數的2倍多8本,且用于購買甲、乙兩種圖書的總費用不超過1725元,那么該圖書館最多可以購買多少本乙圖書?
科目:初中數學 來源: 題型:
【題目】如圖,在同一平面內,∠AOB=150°,∠COD=90°,OE平分∠BOD.
(1)當∠COD的位置如圖1所示時,若∠COE=25°,則∠AOD= ;
(2)當∠COD的位置如圖2所示時,若∠AOE=90°,則∠AOD= ;
(3)當∠COD的位置如圖3所示時,若∠BOE=∠AOC,求∠AOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,B,P,A,C是圓上的點,PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =
,則△PAB的面積為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】方法感悟:
(1)如圖①,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點G、H,使得四邊形EFGH的周長最小?若存在,求出它周長的最小值;若不存在,請說明理由.
問題解決:
(2)如圖②,有一矩形板材ABCD,AB=3米,AD=6米,現想從此板材中裁出一個面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,經研究,只有當點E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點H在矩形ABCD內部或邊上時,才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積,并寫出在以B為坐標原點,直線BC為x軸,直線BA為y軸的坐標系中,點H的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,將置于平面直角坐標系中,
,
,
.
(1)畫出向下平移5個單位得到的
,并寫出點
的坐標;
(2)畫出繞點
順時針旋轉
得到的
,并寫出點
的坐標;
(3)畫出以點為對稱中心,與
成中心對稱的
,并寫出點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發,以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發,以1cm/s的速度向右運動.設它們同時出發,運動時間為ts.當點P與點Q第二次重合時,P、Q兩點停止運動.
(1)AC=__cm,BC=__cm;
(2)當t為何值時,AP=PQ;
(3)當t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=mx2+6mx+n(m>0)與x軸交于A,B兩點(點A在點B左側),頂點為C,拋物線與y軸交于點D,直線BC交y軸于E,S△ABC:S△AEC = 2∶3.
(1)求點A的坐標;
(2)將△ACO繞點C順時針旋轉一定角度后,點A與B重合,此時點O恰好也在y軸上,求拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一次函數的圖像經過點M(-1,3)、N(1,5)。直線MN與坐標軸相交于點A、B兩點.
(1)求一次函數的解析式.
(2)如圖,點C與點B關于x軸對稱,點D在線段OA上,連結BD,把線段BD順時針方向旋轉90°得到線段DE,作直線CE交x軸于點F,求的值.
(3)如圖,點P是直線AB上一動點,以OP為邊作正方形OPNM,連接ON、PM交于點Q,連BQ,當點P在直線AB上運動時,的值是否會發生變化,若不變,請求出其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E在AD的延長線上,下列條件中能判斷AB∥CD的是( )
A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com