【題目】如圖,矩形ABOC的頂點A的坐標為(-4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是( )
A. B.
C.
D.
【答案】B
【解析】分析: 作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最小,根據A的坐標為(-4,5),得到A′(4,5),B(-4,0),D(-2,0),求出直線DA′的解析式為y=x+
,即可得到結論.
詳解: 作A關于y軸的對稱點A′,連接A′D交y軸于E,
則此時,△ADE的周長最小,
∵四邊形ABOC是矩形,
∴AC∥OB,AC=OB,
∵A的坐標為(4,5),
∴A′(4,5),B(4,0),
∵D是OB的中點,
∴D(2,0),
設直線DA′的解析式為y=kx+b,
∴,
∴,
∴直線DA′的解析式為y=x+
,
當x=0時,y=,
∴E(0,),
故選B.
點睛: 此題主要考查軸對稱最短路線問題,解決此類問題,一般都是運用軸對稱的性質,將求折線問題轉化為求線段問題,其說明最短的依據是三角形兩邊之和大于第三邊.
科目:初中數學 來源: 題型:
【題目】根據下面給出的數軸,解答下面的問題:
(1)請你根據圖中A、B兩點的位置,分別寫出它們所表示的有理數A: ,B: ;
(2)觀察數軸,與點A的距離為4的點表示的數是: ;
(3)若將數軸折疊,使得A點與﹣3表示的點重合,則B點與數 表示的點重合.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙O的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,且點為B,則PB的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數y= (x<0)的圖象與直線y=
x+m相交于點A和點B.過點A作AE⊥x軸于點E,過點B作BF⊥y軸于點F,P為線段AB上的一點,連接PE、PF.若△PAE和△PBF的面積相等,且xP=﹣
,xA﹣xB=﹣3,則k的值是( )
A. ﹣5 B. C. ﹣2 D. ﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(11分)如圖,四邊形ABCD為菱形,點E為對角線AC上的一個動點,連結DE并延長交AB于點F,連結BE.
(1)如圖①,求證:∠AFD=∠EBC;
(2)如圖②,若DE=EC且BE⊥AF,求∠DAB的度數;
(3)若∠DAB=90°且當△BEF為等腰三角形時,求∠EFB的度數(只寫出條件與對應的結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線的頂點為D(-1,3),與
軸的交點A在點(-3,0)和(-2,0)間,以下結論:①
;②
;③
;④
其中正確的有()個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.
請結合統計圖,回答下列問題:
(1)本次調查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在軸、
軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數
的圖象恰好經過點 A′,B,則
的值為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com