【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點,AC與DE交于P點,以直線BC為x軸,點E為原點建立直角坐標系.
(1)求△ABC與△DEF的頂點坐標;
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
【答案】(1) A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0);(2)△PEC是等腰直角三角形;(3)S△PEC=.
【解析】整體分析:
(1)根據勾股定理和平移的性質求出△ABC與△DEF的頂點到點E的距離或到點A的距離;(2)根據平移的性質得DE∥AB,即可判斷△PEC的形狀;(3)△PEC的面積等于兩條直角邊乘積的一半.
解:(1)連接AE,CD.
∵△ABC是等腰直角三角形,E是BC的中點,
∴AE⊥BC,∴AE2+CE2=2CE2=AC2,∴CE=AC.
∵△DEF是由△ABC平移得到的,
∴CE=AE=BE=CF=CD=AC=
×
=1,EF=2CE=2.
∴A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0).
(2)根據平移的性質,可知DE∥AB,
∴∠PEC=∠B=45°,∠EPC=∠A=90°,
∴△PEC是等腰直角三角形.
(3)S△PEC=PC·PE=
PC2=
×
CE2=
.
所以S△PEC=.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠CDB′等于( )
A.40°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.
(1)當點P在線段AB上時,求證:△AQP∽△ABC;
(2)當△PQB為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點O,E是OD的中點,連接AE并延長交DC于點F,則DF:FC=( )
A.1:4
B.1:3
C.1:2
D.1:1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD,點F為正方形ABCD內一點,△BFC逆時針旋轉后能與△BEA重合.
(1)旋轉中心是點 ,旋轉角度為 度;
(2)判斷△BEF的形狀為 ;
(3)若∠BFC=90°,說明AE∥BF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發,沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數關系式;
(4)在(3)的條件下,當點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com