日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P與AB相切于點Q.設AC=a,BD=b(a≤b).
(1)求⊙P的半徑r;
(2)以AB為直徑在AB的上方作半圓O(用尺規作圖,保留痕跡,不寫作法),請你探索⊙O與⊙P的位置關系,做出判斷并加以證明;
(3)設a=2,b=4,能否在半圓O中,再畫出兩個與⊙P同樣大小的⊙M和⊙N,使這3個小圓兩兩相交,并且每兩個小圓的公共部分的面積都小于數學公式π?請說出你的結論,并給出證明.

解:(1)如圖1,連接PQ,
∵⊙P與AB相切于Q
∴PQ⊥AB且PQ=r
∵∠CAB=∠ABD=90°
∴△BPQ∽△BCA,△APQ∽△ADB
==
=
∴r=

(2)如圖2:⊙O與⊙P相切,
證明:∵⊙O的半徑R=
∴Rr=
∴AQ===a
OQ=-a=
連接PO
則PO===-=R-r
∴⊙O與⊙P相切;

(3)由(2)知,半圓O的半徑==3,
假設符合要求的圖形存在,每兩個圓的公共部分的面積分別為SPM、SMN、SPN,則它們均小于π,又設每個小圓的面積為S,三個小圓公共部分的面積為SPMN,則三個小圓的覆蓋面積=3S-(SPM+SMN+SPN)+SPMN>3π•(2-π+SPMNπ=π=半圓O的面積,而這是不可能的,故不能在這個半圓O中畫出符合要求的⊙M和⊙N.
分析:(1)易證得△BPQ∽△BCA,△APQ∽△ADB,得到==,故可求得r的值;
(2)作出AB的中垂線交于AB于點O,以點O為圓心,AO為半徑作半圓,即可,由于⊙O的半徑R=,⊙P的半徑為r=,可得到AQ===a,OQ=-a=,連接PO,由勾股定理得到PO=R-r,故⊙O與⊙P相切;
(3)用反證法判斷.
點評:本題利用了相似三角形的判定和性質,勾股定理,圓的面積公式,反證法求解,還考查了圓的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數學 來源: 題型:

10、如圖,已知AB=AC,D是BC的中點,E是AD上的一點,圖中全等三角形有幾對(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對全等三角形,它們是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲视频在线观看 | 波多野结衣 一区二区 | 在线精品亚洲 | 免费中文字幕 | 日本三级黄色大片 | 欧美成人精品一区 | 国产成人精品免高潮在线观看 | 国产天堂一区二区三区 | 欧美在线www | 在线免费国产 | 欧美精品综合在线 | 国产精品久久视频 | 男人都懂的www网站免费观看 | 日本一区二区三区四区视频 | 欧美中文字幕在线 | 日日夜夜狠狠 | 亚洲一区二区三区四区在线观看 | 日韩欧美二区 | 国产成人精品免费视频 | 久久一区二区三区精品 | 成人高清在线 | 在线观看中文视频 | 青娱乐国产| 午夜寂寞网站 | 日本爱爱网站 | 91精品国产综合久久久蜜臀粉嫩 | 成人免费毛片高清视频 | 不卡一区 | 亚洲免费在线观看 | www.xxxx日本| 一本色道精品久久一区二区三区 | 久久成人精品一区二区三区 | 粉嫩视频在线观看 | 久久久国产一区二区三区四区小说 | 一区二区色 | 蜜桃一本色道久久综合亚洲精品冫 | 亚洲不卡视频 | 一级免费片 | 国产精品一区在线看 | 三级黄色网址 | 超级碰在线视频 |