【題目】根據下列條件,能畫出唯一△ABC的是( )
A.AB=4,BC=5,AC=1B.AB=5,BC=4,∠A=40°
C.∠A=60°,∠B=50°,AB=5D.∠C=90°,AB=8
【答案】C
【解析】
要滿足唯一畫出△ABC,就要求選項給出的條件符合三角形全等的判定方法,不符合判定方法的畫出的圖形不一樣,也就是三角形不唯一,而各選項中只有C選項符合ASA,是滿足題目要求的,于是答案可得
A、因為AB+ AC= BC,所以這三邊不能構成三角形,故本選項不符合題意;
B、根據AB=5,BC=4,∠A=40°不能畫出唯一三角形,如圖所示△ABD和△ABC,故本選項不符合題意;
C、根據∠A=60°,∠B=50°,AB=5,符合全等三角形的判定定理ASA,即能畫出唯一三角形,故本選項正確;
D、只有一個角和一個邊無法根據此作出一個唯一的三角形,故本選項不符合題意;
故選:C
根據題意得,
科目:初中數學 來源: 題型:
【題目】(1)|﹣3|﹣5×(﹣)+(﹣4)
(2)(﹣2)2﹣4÷(﹣)+(﹣1)2016
(3)×(﹣24)
(4)﹣12014﹣(1﹣0.5)÷×[(﹣2)3﹣4]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為300,測得大樓頂端 A的仰角為450(點B,C,E在同一水平直線上)。已知AB=50m,DE=10m,求障礙物B,C兩點間的距離。(結果精確到1m,參考數據: )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量(升)與行駛路程
(千米)之間是一次函數關系,其部分圖象如圖所示.
(1)求關于
的函數關系式;(不需要寫自變量
的取值范圍)
(2)已知當油箱中的剩余油量為10升時,該汽車會開始提示加油,在此次行駛過程中,行駛了482千米時,司機發現離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解答下列問題:
(1)計算:6÷(-+
).
方方同學的計算過程如下:原式=6÷(-)+6÷
=-12+18=6.
請你判斷方方同學的計算過程是否正確,若不正確,請你寫出正確的計算過程.
(2)請你參考黑板中老師的講解,用運算律簡便計算(請寫出具體的解題過程):
①999×(-15);②999×+333×(-
)-999×
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點P是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C,D.
(1)∠PCD=∠PDC嗎?為什么?
(2)OP是CD的垂直平分線嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,數軸上A,B兩點表示的數分別為-4,8.有一動點P從點A出發,第1次向左運動1個單位長度,第2次向右運動2個單位長度,第3次向左運動3個單位長度……按照此規律不斷地運動.
(1)①當運動到第2020次時,點P表示的數是_______;
②點A與點B的距離AB=_______;
(2)點P會不會在某次運動時恰好到達某一個位置,使點P到點B的距離是點P到點A的距離的3倍?若存在,請求出此時點P表示的數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完;商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,售價每臺也上調了200元.
(1)商場第一次購入的空調每臺進價是多少元?
(2)商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)解方程組:
①
②
(2)計算
①(π-2013)0-()-2+|-4|;
②4(a+2)(a+1)-7(a+3)(a-3)
(3)因式分解
①a4-16
②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com