日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

已知:如圖甲,△ABC內接于⊙O,AB為直徑,∠CAP=∠B,則結論“AP與⊙O相切于點A”成立.
(1)若把條件“AB為直徑”改為“AB為非直徑的弦”,如圖乙,其它條件不變,那么結論“AP與⊙O相切于點A”仍成立嗎?請證明你的判斷;
(2)在(1)的條件下,若D為弧AB上的一點,且弧AC=弧AD,過B、D兩點的直線交PA于點E.求證:AB•DE=AC•AE.

(1)解:結論仍然成立.
如圖,連接AO,
∴∠D+∠CAD=90°.
∵∠CAP=∠B,∠D=∠B,
∴∠CAP+∠CAD=90°.
∴AP與⊙O相切于點A.

(2)證明:連接AD,則∠ADE=∠C,
∵弧AC和弧AD相等,
∴∠ABC=∠ABD.
∵AE是圓的切線,
∴∠EAD=∠ABD.
∴∠EAD=∠ABC.
∴△AED∽△BAC.
∴AB•DE=AC•AE.
分析:(1)結論仍然成立.如圖連接AO并延長交圓O與D,連接DC,可以證明∠PAC+∠CAD=90°,所以AP與⊙O相切于點A;
(2)連接AD,根據切線的性質和已知條件可以找到三角形相似的條件,然后證明△ADE和△ABC相似,再利用相似三角形的性質就可以證明題目的結論.
點評:此題首先考查了切線的判定定理,也考查了利用切線的性質證明相似三角形,最后利用相似三角形的性質解題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知,如圖甲:△ABC是等腰直角三角形,∠ACB=90°,△ACD是等邊三角形.
精英家教網
(1)填空:當△ACD繞點C順時針旋轉
 
時,旋轉后的△ACD與△ABC構成一個軸對稱圖形(旋轉的角度小于360°);
(2)把圖甲中△ACD繞點C順時針旋轉60°后得到如圖乙,并連接EB,設線段CE與AB相交于點F.
①求證:BE=BF;
②若AC=2,求四邊形ACBE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

8、已知:如圖甲,△ABC內接于⊙O,AB為直徑,∠CAP=∠B,則結論“AP與⊙O相切于點A”成立.
(1)若把條件“AB為直徑”改為“AB為非直徑的弦”,如圖乙,其它條件不變,那么結論“AP與⊙O相切于點A”仍成立嗎?請證明你的判斷;
(2)在(1)的條件下,若D為弧AB上的一點,且弧AC=弧AD,過B、D兩點的直線交PA于點E.求證:AB•DE=AC•AE.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.
精英家教網
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數表示).
精英家教網
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).
精英家教網
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數學 來源:2010年重慶市萬州區初中數學教師專業知識競賽試卷(解析版) 題型:解答題

根據所給的基本材料,請你進行適當的處理,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學生答題情況的預測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點疊在折痕線上,得到△ABE,再過點B把矩形ABCD第三次折疊,使點D落在直線AD上,得到折痕PQ.當沿著BE第四次將該紙片折疊后,點A就會落在EC上.

材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=______AC(用含α的三角函數表示).

材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點P由B出發沿線段BA向點A勻速運動,速度為1cm/s;點Q由A出發沿線段AC向點C勻速運動,速度為2cm/s;連接PQ,設運動的時間為t(s)(0<t<2).

編寫試題選取的材料是______(填寫材料的序號)
編寫的試題是:(1)設△AQP的面積為y(cm2),求y與t之間的函數關系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點Q作QD⊥AP于點D,證△AQD∽△ABC,利用相似性質及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數解析式驗證;
(3)利用余弦定理得出PC、PQ,聯立方程,求得t,再代入PC解得答案.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩视频在线一区 | 日韩欧美不卡 | 国产色黄视频 | 久久久久一区二区三区 | 精品在线不卡 | 欧美日韩不卡合集视频 | 91麻豆精品国产91久久久资源速度 | 在线一级视频 | 91玖玖| 久久99精品国产麻豆不卡 | 亚洲视频一区 | 日韩中文视频 | 日韩欧美一区二区视频 | 国产在线观看一区二区三区 | 午夜精品网站 | 中文字幕在线亚洲 | 精品不卡| 午夜色视频在线观看 | 欧美午夜精品理论片a级按摩 | 日韩一区二区在线免费观看 | 国产精品成人一区二区三区夜夜夜 | 日日爽天天操 | 午夜免费福利电影 | 在线观看国产精品一区 | 亚洲国产视频一区 | 图片区 国产 欧美 另类 在线 | 欧美黄色a视频 | 国产一区二区三区免费视频 | 久久午夜影视 | 国厂黄色片 | 一区二区三区 在线 | 国产精品一区二区在线观看网站 | 美日韩一区二区 | 日本三级网址 | 国产91久久精品一区二区 | 日韩在线欧美 | 久久久久久久久久久久影院 | 欧美视频网站 | 午夜老湿影院 | 久久国产精品视频 | 亚州视频一区二区三区 |