日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),B(4,0),與y軸交于點(diǎn)C(0,-2).
(1)求此拋物線的解析式;
(2)若D點(diǎn)在此拋物線上,且AD∥CB,在x軸上是否存在點(diǎn)E,使得以A,D,E為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,問(wèn)在x軸下方的拋物線上,是否存在點(diǎn)P使得△APD的面積與四邊形ACBD的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(-1,0),B(4,0)和點(diǎn)C(0,-2)三點(diǎn),列出三元一次方程組,解出a、b和c即可;
(2)設(shè)D點(diǎn)坐標(biāo)為(x,y),E點(diǎn)坐標(biāo)為(a,0),根據(jù)AD∥BC,兩直線斜率相等,列式求出D點(diǎn)的坐標(biāo),再證明出△ABC是直角三角形,然后分類(lèi)討論:①當(dāng)∠E是直角時(shí),兩三角形相似,根據(jù)比例關(guān)系求出E點(diǎn)的坐標(biāo),②當(dāng)∠D是直角時(shí),兩三角形相似,根據(jù)比例關(guān)系求出E點(diǎn)的坐標(biāo).
(3)假設(shè)存在P點(diǎn)(x,y)使得△APD的面積與四邊形ACBD的面積相等,根據(jù)S四邊形ACBD=S△ABD+S△ACB=S△ABP列式求出y的值,然后驗(yàn)證P點(diǎn)坐標(biāo)是否存在.
解答:解:(1)∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),B(4,0),與y軸交于點(diǎn)C(0,-2),
,
解得:,
∴拋物線的解析式為y=x2-x-2;

(2)設(shè)D點(diǎn)坐標(biāo)為(x,y),E點(diǎn)坐標(biāo)為(a,0)
∵AD∥CB,
∴兩直線的斜率相等,
∴kAD=kBC
==,
∴y+1=x,
又∵點(diǎn)D在拋物線上,
∴y=x2-x-2,
聯(lián)立兩式解得D點(diǎn)的坐標(biāo)為(5,3),
連接AC,AC=,BC=2,AB=5,
∵AC2+BC2=AB2,
∴△ACB是直角三角形,
①若Rt△ACB∽R(shí)tEDA,如圖1所示,
∵AD∥AC,
∴∠DAB=∠ABC,
∵Rt△ACB∽R(shí)tEDA,
==
==,
當(dāng)a=5時(shí),等式成立,
∴當(dāng)E點(diǎn)坐標(biāo)為(5,0)時(shí),Rt△ACB∽R(shí)tAED;
②若Rt△ACB∽R(shí)tADE,如圖2所示,
同理可知=,即=
解得a=,
∴AE=,根據(jù)勾股定理求出DE=,
檢驗(yàn):==,
∴存在E點(diǎn)坐標(biāo)(,0)使以A,D,E為頂點(diǎn)的三角形與△ABC相似,
綜上這樣的點(diǎn)有兩個(gè),分別是(5,0),(,0);

(3)由(1)(2)可知:AB=5,D點(diǎn)坐標(biāo)為(5,3),C點(diǎn)坐標(biāo)為(0,-2),
假設(shè)存在P點(diǎn)(x,y)使得△APD的面積與四邊形ACBD的面積相等,
S四邊形ACBD=S△ABD+S△ACB=×5×3+×5×2=,
S△APD=×AD×h=,解得h=,
∴P到直線AD的距離為,
直線AD的解析式為y=x+,
P點(diǎn)到直線AD的距離d==,
又知y=x2-x-2,
解得x=
∴這樣的P點(diǎn)存在,坐標(biāo)為()、(,).
點(diǎn)評(píng):本題考查了二次函數(shù)、三角形相似、平行線的性質(zhì)、直線斜率等知識(shí)點(diǎn),解答本題需要較強(qiáng)的綜合作答能力,特別是作答(2)問(wèn)時(shí)需要進(jìn)行分類(lèi),這是同學(xué)們?nèi)菀缀雎缘牡胤,此題難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過(guò)點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫(xiě)出一條正確的結(jié)論,并通過(guò)計(jì)算說(shuō)明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱(chēng)軸;
(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問(wèn):是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲视频 欧美视频 | av影片在线 | 欧美干b | 欧亚视频在线观看 | 成人精品一区二区 | 亚洲黄色免费观看 | 亚洲电影一级片 | 亚洲精品一区二区三区蜜桃久 | 亚洲成人福利 | 中文字幕亚洲天堂 | 欧美国产日韩一区 | 羞羞视频在线观看视频 | 天天操天天色天天 | 欧美在线操 | 欧美日韩网站在线观看 | 国产视频一区二区在线观看 | 国产色在线 | av午夜电影| 一区二区精品在线 | 国产视频第一区 | 欧美日韩视频在线播放 | 免费av电影观看 | 日韩精品一二三区 | www.夜夜操.com | 99re在线观看 | 日韩精品一区二区三区四区五区 | 国产免费久久 | 九色91在线 | 国产精品久久久久一区二区三区 | 久久久久久久国产精品 | 亚洲精品专区 | 看免费毛片 | 日韩在线欧美 | 欧美麻豆| 国产综合一区二区 | 91精品国产91久久综合桃花 | 欧美日韩一区二区视频在线观看 | 在线免费观看羞羞视频 | 日韩精品一区二区三区四区五区 | 91国偷自产一区二区三区亲奶 | h肉动漫无修一区二区无遮av |