日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN
    
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.
證明:在AB上截取EAMC,連結(jié)EM,得△AEM
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BABC,EAMC,∴BAEABCMC,即BEBM
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵_(dá)_______________________________
∴△AEM≌△MCN (ASA).∴AMMN
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)
(3)若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn   °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)
(1)∠1=∠2. AE="MC" ,∠MCN=∠5.
(2)成立  在上截取
(3)∠AMN=60°=(3-2)/3 ×180°
∠A1M1N1=90°=(4-2)/4 ×180°
∠AnMnNn= (n-2)/n ×180°解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖1所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=
12
∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖2),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3)若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn=
 
°時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:

    如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

    證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)

    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當(dāng)∠AnMnNn   °時,結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點BC)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當(dāng)∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當(dāng)∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: www.99热这里只有精品 | 午夜免费观看网站 | 日韩黄色在线 | 亚洲人成人一区二区在线观看 | 亚洲在线视频 | 91精品一区二区三区久久久久久 | 91伊人 | 日韩精品久久久免费观看夜色 | 香蕉久久久久久 | 欧洲另类二三四区 | 91麻豆精品一区二区三区 | 日韩精品免费在线观看 | 亚洲精品久久久久久久久久久 | 国产欧美精品区一区二区三区 | 国产高潮好爽受不了了夜色 | 国产精品2区 | 日韩欧美三区 | 成人影院网站ww555久久精品 | 中文字幕在线一区二区三区 | 久久久免费观看 | 四虎最新网址 | 91在线精品秘密一区二区 | 欧美在线三级 | 午夜视频在线 | 欧美一区二区在线 | 日韩中文一区二区三区 | 成人毛片免费在线观看 | 黄色毛片免费看 | 亚洲精品日韩综合观看成人91 | 五月婷婷丁香 | 天天草天天色 | 国产综合精品 | 成人情趣视频 | 欧美高清视频在线观看 | 国产精品一区二区免费在线观看 | 四虎最新紧急入口 | 欧美日在线 | 无码一区二区三区视频 | 毛片日韩 | 国产精品欧美久久久久一区二区 | 久久精品免费视频观看 |