【題目】如圖,O是等邊△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:
①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;&
②點O與O′的距離為4;
③∠AOB=150°;
④四邊形AOBO′的面積為6+3 ;
⑤S△AOC+S△AOB=6+.
其中正確的結論是_______________.
【答案】①②③⑤.
【解析】
證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點B逆時針旋轉60°得到,故結論①正確;
由△OBO′是等邊三角形,可知結論②正確;
在△AOO′中,三邊長為3,4,5,這是一組勾股數,故△AOO′是直角三角形;進而求得∠AOB=150°,故結論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=6+4,故結論④錯誤;
如圖②,將△AOB繞點A逆時針旋轉60°,使得AB與AC重合,點O旋轉至O′′點.利用旋轉變換構造等邊三角形與直角三角形,將S△AOC+S△AOB轉化為S△COO″+S△AOO″,計算可得結論⑤正確.
由題意可知,∠1+∠2=∠3+∠2=60°,
∴∠1=∠3,
又∵OB=O′B,AB=BC,
在△BO′A和△BOC中,
,
∴△BO′A≌△BOC(SAS),
又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點B逆時針旋轉60°得到,
故結論①正確;
如圖①,連接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=4.
故結論②正確;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三邊長為3,4,5,這是一組勾股數,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=×3×4+
×42=6+4
,
故結論④錯誤;
如圖②所示,將△AOB繞點A逆時針旋轉60°,使得AB與AC重合,點O旋轉至O′′點.
易知△AOO′′是邊長為3的等邊三角形,△COO′′是邊長為3、4、5的直角三角形,
則S△AOC+S△AOB=S四邊形AOCO'=S△COO'+S△AOO'=×3×4+
×32=6+
,
故結論⑤正確.
綜上所述,正確的結論為:①②③⑤.
故答案為:①②③⑤.
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
于E,
,D是AE上的一點,且
,連接BD,CD.
試判斷BD與AC的位置關系和數量關系,并說明理由;
如圖2,若將
繞點E旋轉一定的角度后,試判斷BD與AC的位置關系和數量關系是否發生變化,并說明理由;
如圖3,若將
中的等腰直角三角形都換成等邊三角形,其他條件不變.
試猜想BD與AC的數量關系,請直接寫出結論;
你能求出BD與AC的夾角度數嗎?如果能,請直接寫出夾角度數;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC交O于點D,E是弧CD的中點,連接AE交BC于點F,∠ABC=2∠EAC.
(1)求證:AB是⊙O的切線;
(2)若 tanB=,BD=6,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)一般地,數軸上表示數m和數n的兩點之間的距離等于.如果表示數a和
的兩點之間的距離是5,那么
__________;
(2)若數軸上表示數a的點位于與6之間,求
的值;
(3)當a取何值時,的值最小,最小值是多少?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國古代數學名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是________步.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春節期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.下列判斷:
①當x>0時,y1>y2; ②當x<0時,x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是或
.
其中正確的是( )
A.①② B.①④ C.②③ D.③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com