日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.點M,N分別在邊AD,BC上運動,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分別為E,F.
(1)求梯形ABCD的面積;
(2)求四邊形MEFN面積的最大值.

【答案】分析:(1)分別過D,C兩點作DG⊥AB于點G,CH⊥AB于點H,由AB∥CD,DG∥CH,得到矩形DCCHG,即GH=1,根據勾股定理求出DG的長,即可求出梯形的面積;
(2)與(1)類似求出矩形MEFN,再證明△MEA≌△NFB,得到AE=BF,設AE=x,則EF=7-2x,根據△MEA∽△DGA,求出ME=x,根據矩形的面積公式即可求出S和x的關系式,化成頂點式即可求出答案.
解答:解:(1)分別過D,C兩點作DG⊥AB于點G,CH⊥AB于點H,
∵AB∥CD,
∴DG=CH,DG∥CH,
∴∠DGH=∠CHG=∠CDG=90°,
∴四邊形DGHC為矩形,GH=CD=1.
∵DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴△AGD≌△BHC(HL),
∴AG=BH=×(7-1)=3,
∵在Rt△AGD中,AG=3,AD=5,
由勾股定理得:DG=4,
∴S梯形ABCD=(AB+CD)•DG
=×(1+7)×4
=16.
答:梯形ABCD的面積是16.

(2)∵MN∥AB,ME⊥AB,NF⊥AB,
∴∠MEF=90°,
∴ME=NF,ME∥NF,
∴四邊形MEFN為矩形.
∵AB∥CD,AD=BC,
∴∠A=∠B.
∵ME=NF,∠MEA=∠NFB=90°,
∴△MEA≌△NFB(AAS).
∴AE=BF,
設AE=x,則EF=7-2x,
∵∠A=∠A,∠MEA=∠DGA=90°,
∴△MEA∽△DGA,
=
∴ME=x,
S矩形MEFN=ME•EF=x(7-2x)=-(x-2+
當x=時,ME=<4,
∴四邊形MEFN面積的最大值為
答:四邊形MEFN面積的最大值是
點評:本題主要考查了矩形的性質和判定,等腰梯形的性質和判定,相似三角形的性質和判定,全等三角形的性質和判定,二次函數的最值等知識點,綜合運用性質和判定進行計算是解此題的關鍵.題型較好,綜合性強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久靠逼 | 国产综合亚洲精品一区二 | 午夜一区二区三区在线观看 | 97免费在线视频 | 四季久久免费一区二区三区四区 | 欧美日韩亚洲国产综合 | 国产精品久久久久久久久久久久 | 国产精品视频播放 | 亚洲国产精品视频 | y111111国产精品久久婷婷 | 一本色道久久综合亚洲精品不 | 巨大乳女人做爰 | 日韩在线观看 | 在线免费一级片 | 蜜桃av一区二区三区 | 久久久久久久av | 一级毛片视频 | 午夜精品一区二区三区免费视频 | 免费特级黄色片 | 欧美三级视频在线观看 | 亚洲国产精品99久久久久久久久 | 亚洲va中文字幕 | 中文字幕1区 | 四虎av| 国产精品久久久久久 | 亚洲精品一区二区三区在线 | 91一区二区在线 | 亚洲精品一区二区三区 | 久久久久蜜桃 | 中文字幕一区二区三区乱码在线 | 一级黄色片在线 | www.日韩精品.com | 日韩在线免费观看网站 | av在线影院| 在线观看免费av的网址 | 国产成人精品二区 | 午夜激情视频在线观看 | 欧美一区二区伦理片 | 国产日韩欧美在线观看 | 在线观看国产 | 国产有码|