【題目】經市場調研發現:某品牌童裝平均每天可售出 20 件,每件盈利 40元.在每件降價幅度不超過 18 元的情況下,若每件童裝降價 1 元,則每天可多售出 2 件,設降價 x 元.
(1)降價 x 元后,每件童裝盈利是多少元,每天銷售量是多少件;
(2)要想每天銷售這種童裝盈利 1200 元,那么每件童裝應降價多少元?
(3)每天能盈利 1800 元嗎?如果能,每件童裝應降價多少元?如果不能,請說明理由.
【答案】(1)降價 x 元后,每件童裝盈利是(40﹣x)元,每天銷售量是(20+2x)件;(2)每件童裝降價 10 元;(3)不能,理由見解析.
【解析】
(1)根據每件童裝降價 1 元,每天可多售出 2 件,即可表示出每天的銷售數量,
(2)根據總利潤=單件利潤銷售數量,列出一元二次方程,求解即可,
(3)列方程表示出根的判別式即可解題.
(1)降價 x 元后,每件童裝盈利是(40﹣x)元,每天銷售量是(20+2x)件;
(2)依題意得:(40﹣x)(20+2x)=1200,解得:x1=10,x2=20(舍去),
答:每件童裝降價 10 元;
(3)不能,理由如下:
依題意得:(40﹣x)(20+2x)=1800,即:x2﹣30x+500=0,
∵△=302﹣4×1×500=900﹣2000=﹣1100<0,
∴原方程無解,
∴每天銷售這種童裝不可能盈利 1800 元.
科目:初中數學 來源: 題型:
【題目】為了了解某市120000名初中學生的視力情況,某校數學興趣小組,并進行整理分析.
(1)小明在眼鏡店調查了1000名初中學生的視力,小剛在鄰居中調查了20名初中學生的視力,他們的抽樣是否合理?并說明理由.
(2)該校數學興趣小組從該市七、八、九年級各隨機抽取了1000名學生進行調查,整理他們的視力情況數據,得到如下的折線統計圖.
請你根據抽樣調查的結果,估計該市120000名初中學生視力不良的人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉可得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE.
(感知)如圖①,過點A作AF⊥BE交BC于點F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點M,過點M作FG⊥BE交BC于點F,交AD于點G.
(1)求證:BE=FG.
(2)連結CM,若CM=1,則FG的長為 .
(應用)如圖③,取BE的中點M,連結CM.過點C作CG⊥BE交AD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是反比例函數在第二象限內圖象上一點,點B是反比例函
數在第一象限內圖象上一點,直線AB與y軸交于點C,且AC=BC,連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】李大爺按每千克2.1元批發了一批黃瓜到鎮上出售,為了方便,他帶了一些零錢備用.他先按市場售出一些后,又降低出售.售出黃瓜千克數x與他手中持有的錢數y元(含備用零錢)的關系如圖所示,結合圖象回答下列問題:
(1)李大爺自帶的零錢是多少?
(2)降價前他每千克黃瓜出售的價格是多少?
(3)賣了幾天,黃瓜賣相不好了,隨后他按每千克下降1.6元將剩余的黃瓜售完,這時他手中的錢(含備用的錢)是530元,問他一共批發了多少千克的黃瓜?
(4)請問李大爺虧了還是賺了?若虧(賺)了,虧(賺)多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列方程的解法中,錯誤的個數是( )
①方程2x-1=x+1移項,得3x=0
②方程=1去分母,得x-1=3=x=4
③方程1-去分母,得4-x-2=2(x-1)
④方程去分母,得2x-2+10-5x=1
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下面推理過程:
如圖,∠1+∠2=230°,b∥c,則∠1,∠2,∠3,∠4各是多少度?
解:∵∠1=∠2(__________________),
∠1+∠2=230°,
∴∠1=∠2=___________(填度數).
∵b∥c,
∴∠4=∠2=_______(填度數)(_______________________________),
∠2+∠3=180°(________________________________),
∴∠3=180°-∠2=____________(填度數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個反比例函數,
在第一象限內的圖象如圖所示,點P1,P2,P3,……P2005在反比例函數
圖象上,它們的橫坐標分別是x1,x2,x3,x2005縱坐標分別為1,3,5,……;
共2005個連續奇數,過點P1,P2,P3,……,P2005分別作軸的平行線,與
的圖象交點依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2005(x2005,y2005),則
_____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com