日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,已知AB是⊙O的直徑,CD是弦,AB⊥CD于點M,CE交AB的延長線于點E.
(1)如果∠ECD=2∠A,求證:EC是⊙O的切線;
(2)如果CD=8cm,BM=2cm,求⊙O的半徑r.

:(1)證明:連接CO,
∵圓心角∠BOC與圓周角∠A都對
∴∠BOC=2∠A,又∠ECD=2∠A,
∴∠ECD=∠BOC,
又∵∠BOC+∠OCM=90°,
∴∠ECD+∠OCM=90°,即∠OCE=90°,
∴EC是⊙O的切線;

(2)∵AB⊥CD,CD=8cm,
∴CM=CD=4cm,
設圓的半徑為rcm,即OC=OB=rcm,
又∵MB=2cm,
∴OM=OB-MB=(r-2)cm,
在Rt△COM中,根據勾股定理得:CO2=CM2+OM2
即r2=42+(r-2)2
解得:r=5cm.
分析:(1)連接OC,利用同弧所對的圓心角等于所對圓周角的2倍,得到∠BOC=2∠A,又∠ECD=2∠A,等量代換得到∠BOC=∠ECD,而在直角三角形OCM中,∠BOC+∠OCM=90°,等量代換得到∠ECD+∠OCM=90°,即∠OCE=90°,即可得到EC與圓O相切;
(2)由直徑AB垂直于弦CD,利用垂徑定理得到M為CD的中點,由CD求出CM的長,設半徑為r,再由OB-MB表示出OM,在直角三角形OCM中,利用勾股定理列出關于r的方程,求出方程的解即可得到r的值.
點評:此題考查了切線的判斷,圓周角定理,以及勾股定理,利用了方程的思想,切線的判定方法有兩種:有點連接,證明垂直;無點作垂線,證明垂線段等于圓的半徑.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品三级 | 亚洲欧美一区二区三区在线 | 亚洲精品亚洲人成人网 | 久久精品国产99国产 | 热久久这里只有精品 | 国产ts视频| 色婷网| 国产在线一区二区三区视频 | 欧美激情一区二区三区 | www久久99| 日韩精品av一区二区三区 | 一区二区三区国产 | 国产成人在线播放 | 久久视频国产 | 国产精品欧美日韩 | 日韩欧美一区二区三区免费观看 | 黄a在线 | 麻豆久| 美女一级黄 | 中文字幕一区二区三区免费视频 | 亚洲一区在线日韩在线深爱 | 国产精品久久久久桃色tv | 国产精品视频免费 | 开心激情网站 | 夜夜爆操| 国产成人一区二区三区影院在线 | 精品精品久久 | 色综合天天综合网天天看片 | 污视频链接 | 在线观看国产一区 | 亚洲欧洲日本国产 | 欧洲成人在线 | 福利一区二区在线 | 日韩免费精品视频 | 六月丁香在线观看 | 亚洲欧美综合一区 | 欧美日韩不卡合集视频 | 色天天 | 久久婷婷国产麻豆91天堂 | 国产午夜精品一区二区三区嫩草 | 色综合免费视频 |