【題目】如圖,,點
為
內一點,
,點
分別在射線
上,當
的周長最小時,下列結論:①
;②
;③
的周長最小值為24;④
的周長最小值為8;其中正確的序號為__________.
【答案】①④
【解析】
分別作點P關于OA、OB的對稱點P1、P2,連P1、P2,交OA于M,交OB于N,△PMN的周長=P1P2,然后證明△OP1P2是等邊三角形,即可求解.
解:分別作點P關于OA、OB的對稱點P1、P2,連P1、P2,交OA于M,交OB于N,
則OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,
MP=P1M,PN=P2N,則△PMN的周長的最小值=P1P2
∴∠P1OP2=2∠AOB=60°,
∴△OP1P2是等邊三角形,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=120°
△PMN的周長=P1P2,
∴P1P2=OP1=OP2=OP=8,
∴①④正確,
故答案為①④
科目:初中數學 來源: 題型:
【題目】直接寫出結果:
(1)(﹣3)4= ,
(2)|﹣|= ,
(3)﹣9+5= ,
(4)﹣12+32= ,
(5)﹣8﹣3= ,
(6)(﹣2)3÷0.25×0= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠A=30°,點P從點A出發以2cm/s的速度沿折線A﹣C﹣B運動,點Q從點A出發以a(cm/s)的速度沿AB運動,P,Q兩點同時出發,當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數圖象由C1,C2兩段組成,如圖2所示.
(1)求a的值;
(2)求圖2中圖象C2段的函數表達式;
(3)當點P運動到線段BC上某一段時△APQ的面積,大于當點P在線段AC上任意一點時△APQ的面積,求x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,連接AE.
求證:(1)BF=DF;
(2)若AB=6,AD=8,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,等腰直角三角形的直角頂點
在坐標原點,點
的坐標為
,求點
的坐標.
(2)依據(1)的解題經驗,請解決下面問題:
如圖2,點,
兩點均在
軸上,且
,分別以
為腰在第一、第二象限作等腰
,
連接
,與
軸交于點
的長度是否發生改變?若不變,求
的值;若變化,求
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統,圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數字從左到右依次記為,
,
,
,那么可以轉換為該生所在班級序號,其序號為
.如圖2第一行數字從左到右依次為0,1,0,1,序號為
,表示該生為5班學生.表示6班學生的識別圖案是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com