在△ABC中,AC=BC=2,∠C=900,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點。圖①,②,③是旋轉三角板得到的圖形中的3種情況。
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數量關系?并結合圖②加以證明。
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數量關系?并結合圖④加以證明。
科目:初中數學 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
4 | 5 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com