日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

Ⅰ、如圖①,在平面直角坐標系中,O為坐標原點,邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點C、D同時從點O出發(fā),點C以1單位長/秒的速度向點A運動,點D以2個單位長/秒的速度沿折線OBA運動.設(shè)運動時間為t秒,0<t<5.
(1)當數(shù)學公式時,證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點C為中心,將CD所在的直線順時針旋轉(zhuǎn)60°交AB邊于點E,若以O(shè)、C、E、D為頂點的四邊形是梯形,求點E的坐標.
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點E,F(xiàn)在l1上,點G,H在l2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點M在△ABC的邊上,過點M畫一條平分三角形面積的直線.

、解:(1)作BG⊥OA于G.
在Rt△OBG中,=cos∠BOA=cos60°=
=
=
又∵∠DOC=∠BOG,
∴△DOC∽△BOG,
∴∠DCO=∠BGO=90°.
即DC⊥OA;

(2)當0<t<時,
在Rt△OCD中,CD=OD×sin60°=2t×=t,
∴S=×OC×CD=×t×t=t2;
≤t<5時(如圖2)
過點D作DH⊥OA于H.
在Rt△AHD中,
HD=AD×sin60°=(10-2t)×=(5-t),
S=×OC×HD=×t×(5-t)=t-t2

(3)當DE∥OC時,△DBE是等邊三角形.(如圖3)
BE=BD=5-2t.
在△CAE中,∠ECA=90°-∠DCE=30°,∠BAO=60°,
∴∠CEA=90°.
而AC=5-t,∴AE=AC=
∴BE+AE=(5-2t)+=5,
∴t=1,
因此AE==2.
過點E作EM⊥OA于M.
則EM=AE×sin60°=2×=
AM=AE×cos60°=2×=1,OM=OA-AM=4.
∴點E的坐標為(4,);
當CD∥OE時(如圖4),BD=2t-5.
∠OEA=90°,∴CD⊥AB.
而△OAB是等邊三角形,
∴DE=BD-AB=
∴2t-5=
∴t=
因此AE==
∴E的縱坐標為×=
橫坐標為5-×=
∴點E的坐標為();
綜上所述,點E的坐標為(4,)或();

Ⅱ、(1)解:取BC的中點D,過A、D畫直線,則直線AD為所求;

(2)證明:∵l1∥l2
∴點E,F(xiàn)到l2之間的距離都相等,設(shè)為h.
∴S△EGH=GH•h,S△FGH=GH•h,
∴S△EGH=S△FGH
∴S△EGH-S△GOH=S△FGH-S△GOH
∴△EGO的面積等于△FHO的面積;

(3)解:取BC的中點D,連接MD,過點A作AN∥MD交BC于點N,過M、N畫直線,則直線MN為所求.
分析:Ⅰ、(1)當0<t<時,點C不過OA中點,想證明垂直應(yīng)先作出一條和CD有關(guān)的垂線,利用相似求解;
(2)應(yīng)分當0<t<時,和≤t<5時兩種情況探討,應(yīng)用t表示利用特殊的三角函數(shù)表示出OC邊上的高.進而表示出面積即可.
(3)以O(shè)、C、E、D為頂點的四邊形是梯形,那么應(yīng)根據(jù)(1)(2)中的兩種類型的三角形,可分DE∥CO、CD∥OE兩種情況進行探討;
Ⅱ、(1)根據(jù)三角形的面積公式,只需過點A和BC的中點畫直線即可;
(2)結(jié)合平行線間的距離相等和三角形的面積公式即可證明;
(3)結(jié)合(1)和(2)的結(jié)論進行求作.
點評:Ⅰ、是一道旋轉(zhuǎn)與運動相結(jié)合的大題,并且聯(lián)系函數(shù)與四邊形知識,要注意這些知識點間的融會貫通.
Ⅱ、主要是根據(jù)三角形的面積公式,知:三角形的中線把三角形的面積等分成了相等的兩部分;同底等高的兩個三角形的面積相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在舞臺上有兩根豎直放置的鐵桿,其中鐵桿AB長1m,CD長2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點為坐標原點,建立了如圖所示的平面直角坐標系,演員的位置為點M,設(shè)其精英家教網(wǎng)橫坐標為x,縱坐標為y.
(1)寫出線段BD的函數(shù)關(guān)系式;
(2)為了保護演員的安全,過D點拉了一根與地面平行的鋼索DE,在上面掛上了一條保險鋼絲MN,MN隨演員的移動而移動,并始終垂直于地面,其長度自動調(diào)整,設(shè)保險鋼絲的長度為w,求w與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•沙坪壩區(qū)模擬)如圖1,在同一平面內(nèi),Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC與DF重合,△ABC始終保持不動.
(1)將△DEF沿CB(EB)方向平移,直到點E與點B重合為止,設(shè)平移的距離為x,兩個三角形重疊部分的面積為y,寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖2,將△DEF繞點C逆時針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△D′E′F,設(shè)D′E′與AC交于點M,當∠ECE′=∠EAC時,求線段CM的長;
(3)如圖3,在△DEF繞點C逆時針旋轉(zhuǎn)的過程中,若設(shè)D′F所在直線與AB所在直線的交點為N,是否存在點N使△ACN為等腰三角形,若存在,求出線段BN的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點,過點E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標系中,使點O與原點重合,OC在x軸正半軸上,點A、B在第一象限內(nèi).
(1)求點E的坐標;
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交OC于點M,過M作MN∥AO交折線ABC于點N,連接PN.設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請說明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).現(xiàn)在開始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個單位的速度沿OC方向向右移動,直到點D與點C重合時停止(如圖2).設(shè)運動時間為t秒,運動后的直角梯形為E′D′G′H′;探究:在運動過程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖1,在平面直角坐標系內(nèi),直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,如圖1,在平面直角坐標系內(nèi),直線l1:y=-x+4與坐標軸分別相交于點A、B,與直線l2數(shù)學公式相交于點C.
(1)求點C的坐標;
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 黄av片| 97综合色| 少妇一区二区三区 | 国产精品国产三级国产aⅴ入口 | 777kkk999成人ww| 国产在线观看av | 久久久久久av | 久久久久久综合 | 精品免费 | 一区二区三区四区国产 | 超碰综合 | 日韩欧美中文字幕视频 | 精品123区 | 色片在线免费观看 | 久久久久久一区 | 天天艹天天干天天 | theporn国产在线精品 | 日批免费视频 | 黄色影音| 999在线视频免费观看 | 在线精品亚洲欧美日韩国产 | 免费黄色在线观看 | 不卡在线| 亚洲一二三 | 欧美成人一区二区三区片免费 | 精品亚洲永久免费精品 | 午夜操操| 99国产精品99久久久久久 | 可以免费看黄的网站 | 91国内外精品自在线播放 | h小视频 | 午夜在线播放 | 草视频在线 | 毛片免费观看 | 日韩在线视频精品 | 亚洲成人免费 | 日韩一区二区电影 | 久久综合九色综合欧美狠狠 | 国产成人精品一区二 | 久久精品导航 | 国产在线一区二区三区在线观看 |