【題目】若任意一個三位數t的百位數字為a,十位數字為b,個位數字為c,那么可將這個三位數表示為t=(a≠0),且滿足t=100a+10b+c,我們把三位數各位上的數字的乘積叫做原數的積數,記為P(t).重新排列一個三位數各位上的數字,必可以得到一個最大的三位數和一個最小的三位數,此最大三位數與最小三位數之差叫做原數的差數,記為F(t),例如:264的積數P(264)=48,差數F(264)=642﹣246=396.
(1)根據以上材料:F(258)= ;
(2)若一個三位數t=,且P(t)=0,F(t)=135,求這個三位數.
【答案】(1)594;(2)滿足條件的三位數為404或440.
【解析】
(1)直接利用原數的差數的定義計算即可得出結論;
(2)先根據原數的積數確定出a=0或b=0,再分兩種情況,利用原數的差數為135建立方程求解,即可得出結論.
(1)根據原數的差數的定義得,F(258)=852﹣258=594,
故答案為:594;
(2)根據原數的積數的定義得,P=4ab,
∵P(t)=0,
∴4ab=0,
∴a=0或b=0,
①當a=0時,
Ⅰ、當b≥4時,
∵F(t)=100b+40﹣400﹣b=99b﹣360,
∵F(t)=135,
∴99b﹣360=135,
∴b==4,滿足題意,
即:三位數為:404
Ⅱ、當b<4時,F(t)=400+10b﹣100b﹣4=396﹣90b=135,
∴b=,此時,b不是整數,不滿足題意,
②當b=0時,
Ⅰ、當a≥4時,F(t)=100a+40﹣400﹣a=99a﹣360=135,
∴a=4,
即:三位數為:440,
Ⅱ、當a<4時,F(t)=400+10a﹣100a﹣4=396﹣90a=135,
∴b=,此時,b不是整數,不滿足題意,
即:滿足條件的三位數為404或440.
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y=kx+b(k≠0)的圖象與x軸、y軸交于A、B兩點,A(﹣2,0),B(0,1).
(1)求直線l的函數表達式;
(2)若P是x軸上的一個動點,請直接寫出當△PAB是等腰三角形時P的坐標;
(3)在y軸上有點C(0,3),點D在直線l上,若△ACD面積等于4,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,OM和ON分別平分∠AOC和∠BOC.
(1)如圖:若C為∠AOB內一點,探究∠MON與∠AOB的數量關系;
(2)若C為∠AOB外一點,且C不在OA、OB的反向延長線上,請你畫出圖形,并探究∠MON與∠AOB的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,小明在大樓的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡角∠ABC=30°點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上,且PH⊥HC.
(1)山坡AB的坡度為 ;
(2)若山坡AB的長為20米,求大樓的窗口P處距離地面的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知代數式M=(a+b+1)x3+(2a﹣b)x2+(a+2b)x﹣4是關于x的二次多項式.
(1)若方程3(a+b)y=ky﹣8的解是y=4,求k的值;
(2)當x=2時,代數式M的值為﹣34.當x=﹣2時,求代數式M的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連結AC,將△ACE沿AC翻轉得到△ACF,直線FC與直線AB相交于點G.
(1)求證:FG是⊙O的切線;
(2)若B為OG的中點,CE=,求⊙O的半徑長;
(3)①求證:∠CAG=∠BCG;
②若⊙O的面積為4π,GC=2,求GB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家規定,“中小學生每天在校體育鍛煉時間不小于1小時”,某地區就“每天在校體育鍛煉時間”的問題隨機調查了若干名中學生,根據調查結果制作如下統計圖(不完整).其中分組情況:A組:時間小于0.5小時;B組:時間大于等于0.5小時且小于1小時;C組:時間大于等于1小時且小于1.5小時;D組:時間大于等于1.5小時.
根據以上信息,回答下列問題:
(1)A組的人數是 人,并補全條形統計圖;
(2)本次調查數據的中位數落在組 ;
(3)根據統計數據估計該地區25 000名中學生中,達到國家規定的每天在校體育鍛煉時間的人數約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形中,
,
.點
從點
出發,沿
勻速運動;點
從點
出發,沿
的路徑勻速運動.兩點同時出發,在
點處首次相遇后,點
的運動速度每秒提高了
,并沿
的路徑勻速運動;點
保持速度不變,繼續沿原路徑勻速運動,某一時刻兩點在長方形
某一邊上的
點處第二次相遇.若點
的速度為
.
備用圖
(1)點原來的速度為___________
.
(2),
兩點在
點處首次相遇后,再經過___________秒后第二次在
點相遇.
(3)點在___________邊上.此時
___________
.
(4)在點相遇后
,
兩點沿原來的方向繼續前進.又經歷了
次相遇后停止運動,請問此時兩點停在長方形
邊上的什么位置?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網格(網格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com