【題目】如圖所示,已知拋物線y=ax+bx+c與x軸負半軸交于A、B兩點,與y軸交于點C,且OB=,CB=2
,∠CAO=30°,求拋物線的解析式和它的頂點坐標。
【答案】拋物線解析式為:,頂點坐標是(
).
【解析】
在Rt△BOC中,根據OB=,CB=2
,由勾股定理可得:OC=3, 在Rt△AOC中,根據∠CAO=30°,OC=3,根據30°角所對直角邊等于斜邊的一半, 可得AC=6,再根據勾股定理可得:OA=
,所以點A(
),B(
),C(0,3),根據拋物線與x軸負半軸交于A、B兩點,與y軸交于點C,可設拋物線解析式為:
,把點C坐標代入可得:
,解得:
,所以拋物線解析式為:
,所以頂點坐標是(
)
在Rt△BOC中,因為OB=,CB=2
,
由勾股定理可得:OC=3,
在Rt△AOC中,因為∠CAO=30°,OC=3,
所以 AC=6,
根據勾股定理可得:OA=,
所以點A(),B(
),C(0,3),
因為拋物線與x軸負半軸交于A、B兩點,與y軸交于點C,
可設拋物線解析式為:,
把點C坐標代入可得:
,
解得:,
所以拋物線解析式為:,
所以頂點坐標是()
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A點坐標為(3,4),將線段OA繞原點O逆時針旋轉90°得到線段OA′,則點A′的坐標是( )
A. (﹣4,3) B. (﹣3,4)
C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個可以自由轉動的均勻轉盤,都被分成了3等份,并在每份內均標有數字,如圖所示.規則如下:
①分別轉動轉盤;
②兩個轉盤停止后,將兩個指針所指份內的數字相乘(若指針停止在等份線上,那么重轉一次,直到指針指向某一份為止).
【1】用列表法或樹狀圖分別求出數字之積為3的倍數和數字之積為5的倍數的概率;
【2】小明和小亮想用這兩個轉盤做游戲,他們規定:數字之積為3的倍數時,小明得2分;數字之積為5的倍數時,小亮得3分.這個游戲對雙方公平嗎?請說明理由;認為不公平的,試修改得分規定,使游戲對雙方公平.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動點E、F分別從點B、D同時出發,以1cm/s的速度向點A、C運動,連接AF、CE,取AF、CE的中點G、H,連接GE、FH.設運動的時間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當t為何值時,四邊形EHFG為菱形;
(3)試探究:是否存在某個時刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC 是等邊三角形,BD 是 AC 邊上的高,延長 BC 到 E使 CE=CD,則圖中等腰三角形的個數是()
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABE,△BCD均為等邊三角形,點A,B,C在同一條直線上,連接AD,EC,AD與EB相交于點M,BD與EC相交于點N,下列說法正確的有:___________
①AD=EC;②BM=BN;③MN∥AC;④EM=MB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系內的梯形(
為原點)中
,
,
,
,
.
求經過
,
,
三點的拋物線的解析式;
延長
交拋物線于點
,求線段
的長;
在
的條件下,動點
、
分別從
、
同時出發,都以每秒
個單位的速度運動,其中點
沿
由
向
運動,點
沿
由
由
運動(其中一個點運動到終點后,另一個點運動也隨之停止),過點
作
交
于點
,連接
.設動點運動的時間為
秒,請你探索:當時間
為何值時,
中有一個角是直角.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com