日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是的中點,CM交AB于點N,若AB=4,求MN•MC的值.
【答案】分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MN•MC;代入數據可得MN•MC=BM2=8.
解答:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.(3分)

(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=AB.(6分)

(3)解:連接MA,MB,
∵點M是的中點,

∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.

∴BM2=MN•MC.
又∵AB是⊙O的直徑,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
∴MN•MC=BM2=8.(10分)
點評:此題主要考查圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月天婷婷基地 | 成人在线一区二区 | 亚洲一级免费视频 | 久久久久久久av | 天堂中文资源在线 | 欧美精品福利 | 亚洲人成在线播放 | 在线免费黄色 | 日本一级一片免费视频 | 日本成人小视频 | 久久婷婷色 | 韩日在线视频 | 亚洲av毛片成人精品 | 日韩欧美不卡 | 亚洲三级在线 | 日本特黄视频 | 亚洲精品免费观看 | 狠狠操夜夜操 | 天天干天天色天天射 | 免费av一区二区三区 | 亚洲精品久久久久久久久 | 日韩字幕| 伊人网在线播放 | 欧美啪啪网站 | 一二三区视频 | 免费av网址在线观看 | 天天做天天爽 | 国产高清一区二区三区 | 国产精品久久久久久99 | www.99riav | 欧美精品久久 | 九九久久精品视频 | 国产超碰人人模人人爽人人添 | 欧美日韩精品在线观看 | 亚色视频| 久久成人精品视频 | 国产福利视频在线 | 亚洲成人中文字幕 | 亚洲视频在线观看 | 在线观看视频一区二区三区 | 日韩精品一二区 |