日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

解:(1)可知四邊形APDQ為平行四邊形
證明:由題知△ABC≌△DEF且△ABC
△DEF為等邊三角形
∴∠BAC=∠EDF=60°
又∵EF∥BC,MN∥BC
∴EF∥BC∥MN
∴∠MDF=∠DFE=60°,∠FED=∠EDN=60°
∠MNA=∠BCA=60°,∠QDN=∠QND=60°
∴△DQN為等邊三角形
∴∠DQN=∠PDQ=60°,
∴PD∥AQ
∴∠BAC=∠DQN=60°,
∴AP∥DQ
∴四邊形APDQ為平行四邊形.

(2)y=x(a-x)=-x2+ax=-(x-2+a2
∴當x取時,即D點位于MN的中點位置時,四邊形APDQ的面積最大,且最大值為a2

(3)當D點和圓心O重合時,四邊形APDQ為菱形,
理由:由(1)、(2)可知,△MPO,△QON為等邊三角形,且MO=ON,
所以△MPQ≌△QON.
因此OP=OQ,又因為四邊形APDQ為平行四邊形.
所以可知四邊形APDQ為菱形,
由題可知,S△ABC=a2,而由(2)知S四邊形APDQ=a2

∴S四邊形APDQ=S△ABC
分析:(1)應該是平行四邊形,已知∠BAC=∠FOE=60°,那么證明∠BPD=∠CQD=60°就是關鍵,可根據FE∥MN∥BC,用內錯角相等,得出∠AMN=∠MDP=∠ANM=∠EDN=60°,那么可根據三角形的內角和得出∠DPM=∠DQN=60°,由此可得出四邊形APDQ的兩組對邊都平行,也就得出是平行四邊形的結論.
(2)要求四邊形的面積,就要知道一邊和這邊上的高分別是多少,告訴了DM=x,那么DN=a-x,根據(1)不難得出三角形MDP和DQN都是等邊三角形,那么DP=x,DP邊上的高可以用DN•sin60°來表示,那么可根據平行四邊形的面積公式求出y與x的函數關系式.然后可根據函數的性質得出面積的最大值和D的位置.
(3)應該是菱形,如果D,O重合,那么OM=ON,那么兩個等邊三角形MDP和DQN就應該全等,那么OP=OQ,因此平行四邊形APOQ應該是菱形,有三角形ABC的邊長又知道它是等邊三角形,那么它的面積就不難求出,(2)中已經得出了平行四邊形APOQ的面積,那么可以通過比較得出他們的關系.
點評:本題主要考查了平行四邊形,菱形的判定,全等三角形的判定和性質以及二次函數的綜合應用等知識點,通過特殊角來得出線段間的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說精英家教網明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第34章《二次函數》中考題集(51):34.4 二次函數的應用(解析版) 題型:解答題

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第20章《二次函數和反比例函數》中考題集(47):20.5 二次函數的一些應用(解析版) 題型:解答題

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(47):2.4 二次函數的應用(解析版) 題型:解答題

如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:2005年山東省濟南市中考數學試卷(課標卷)(解析版) 題型:解答題

(2005•濟南)如圖(1),已知圓O是等邊△ABC的外接圓,過O點作MN∥BC分別交AB、AC于M、N,且MN=a.另一個與△ABC全等的等邊△DEF的頂點D在MN上移動(不與點M、N重合),并始終保持EF∥BC,DF交AB于點P,DE交AC于點Q.
(1)試判斷四邊形APDQ的形狀,并進行證明;
(2)設DM為x,四邊形APDQ的面積為y,試探究y與x的函數關系式;四邊形APDQ的面積能取到最大值嗎?如果能,請求出它的最大值,并確定此時D點的位置.
(3)如圖(2),當D點和圓心O重合時,請判斷四邊形APDQ的形狀,并說明理由;你能發現四邊形APDQ的面積與△ABC的面積有何關系嗎?為什么?

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美精品一区二区三区在线 | 精品久久久免费视频 | 欧洲精品久久久 | 国产精品中文字幕在线观看 | 天天天操| 久久夜色精品 | 精品视频在线观看一区二区三区 | 久久亚洲国产精品 | 8×8x拔擦拔擦在线视频网站 | 国产精品久久久久国产a级 色999国产 | 狠狠91 | 国产亚洲综合精品 | 大黄网站在线观看 | 91小视频| 欧美精品在线观看免费 | 日本中文在线 | 欧美第一区| 欧美日韩中字 | 欧美同性大尺度腐剧 | caoporn国产精品免费公开 | 欧美国产在线观看 | 131美女免费做媛视频 | 成人二区| www.色哟哟| 毛片久久久 | 色九九 | 伊人免费在线观看高清版 | 一区在线看 | 亚洲精品久久久久久国产精华液 | 久久久久成人网 | 天堂久久精品 | 成人福利网站 | 免费观看成人羞羞视频网站观看 | 国产一级特黄aaa大片 | 精品99在线 | 欧美性网| 欧美日韩国产成人在线 | 午夜久久久| 欧美一区二区在线观看 | 国产精品96久久久久久久 | 国产午夜精品视频 |