【題目】如圖,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各內角的度數.
【答案】△ABC各內角的度數分別為64°、43°、73°.
【解析】
根據三角形外角性質得到∠FDE=∠BAD+∠ABD,而∠BAD=∠CBE,則∠FDE=∠BAD+∠CBE=∠ABC=64°;同理可得∠DEF=∠ACB=43°,然后根據三角形內角和定理計算∠BAC=180°﹣∠ABC﹣∠ACB即可.
∵∠FDE=∠BAD+∠ABD,∠BAD=∠CBE,∴∠FDE=∠BAD+∠CBE=∠ABC,∴∠ABC=64°;
同理:∠DEF=∠FCB+∠CBE=∠FCB+∠ACF=∠ACB,∴∠ACB=43°;
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣64°﹣43°=73°,∴△ABC各內角的度數分別為64°、43°、73°.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數的關系式;
(2)在給定的平面直角坐標系中,畫出這兩個函數的大致圖象;
(3)結合圖象直接寫出x2+bx+c>x+1時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E為BC邊的中點,連接DE.
(1)求證:DE與⊙O相切.
(2)若tanC= ,DE=2,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿DE、EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數為( 。
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個鈍角三角形中,如果一個角是另一個角的3倍,這樣的三角形我們稱之為“智慧三角形”.如,三個內角分別為120°,40°,20°的三角形是“智慧三角形”.如圖,∠MON=60°,在射線OM上找一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交射線OB于點C.
(1)∠ABO的度數為_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求證:△AOC為“智慧三角形”;
(3)當△ABC為“智慧三角形”時,求∠OAC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ACB=90°,點D、E在AB上,將△ACD、△BCE分別沿CD、CE翻折,點A、B分別落在點A′、B′的位置,再將△A′CD、△B′CE分別沿A′C、B′C翻折,點D與點E恰好重合于點O,則∠A′OB′的度數是( )
A.90° B.120° C.135° D.150°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學數學活動小組為了調查居民的用水情況,從某社區的1500戶家庭中隨機抽取了30戶家庭的月用水量,結果如下表所示:
月用水量(噸) | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
戶 數 | 4 | 3 | 5 | 11 | 4 | 2 | 1 |
(1)求這30戶家庭月用水量的平均數,眾數和中位數;
(2)根據上述數據,試估計該社區的月用水量;
(3)由于我國水資源缺乏,許多城市常利用分段計費的辦法引導人們節約用水,即規定每個家庭的月基本用水量為m(噸),家庭月用水量不超過m(噸)的部分按原價收費,超過m噸部分加倍收費,你認為上述問題中的平均數、眾數、中位數中哪一個量作為月基本用水量比較合理?簡述理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次籃球聯賽初賽階段,每隊有場比賽,每場比賽都要分出勝負,每隊勝一場得
分, 負一場得
分,積分超過
分才能獲得參賽資格.
(1)已知甲隊在初賽階段的積分為分,求甲隊初賽階段勝、負各多少場;
(2)如果乙隊要獲得參加決賽資格,那么乙隊在初賽階段至少要勝多少場?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com