【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當n=3時,a的值為 .
【答案】或
.
【解析】
試題分析:根據操作步驟,可知每一次操作時所得正方形的邊長都等于原矩形的寬.所以首先需要判斷矩形相鄰的兩邊中,哪一條邊是矩形的寬.當<a<1時,矩形的長為1,寬為a,所以第一次操作時所得正方形的邊長為a,剩下的矩形相鄰的兩邊分別為1﹣a,a.由1﹣a<a可知,第二次操作時所得正方形的邊長為1﹣a,剩下的矩形相鄰的兩邊分別為1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)與(2a﹣1)的大小關系不能確定,需要分情況進行討論.又因為可以進行三次操作,故分兩種情況:①1﹣a>2a﹣1;②1﹣a<2a﹣1.對于每一種情況,分別求出操作后剩下的矩形的兩邊,根據剩下的矩形為正方形,列出方程,求出a的值.
解:由題意,可知當<a<1時,第一次操作后剩下的矩形的長為a,寬為1﹣a,所以第二次操作時正方形的邊長為1﹣a,第二次操作以后剩下的矩形的兩邊分別為1﹣a,2a﹣1.此時,分兩種情況:
①如果1﹣a>2a﹣1,即a<,那么第三次操作時正方形的邊長為2a﹣1.
∵經過第三次操作后所得的矩形是正方形,
∴矩形的寬等于1﹣a,
即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;
②如果1﹣a<2a﹣1,即a>,那么第三次操作時正方形的邊長為1﹣a.
則1﹣a=(2a﹣1)﹣(1﹣a),解得a=.
故答案為:或
.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當點D在AC上時,如圖(1),線段BD、CE有怎樣的數量關系和位置關系?直接寫出你猜想的結論;
②將圖(1)中的△ADE的位置改變一下,如圖(2),使∠BAD=∠CAE,其他條件不變,則線段BD,CE又有怎樣的數量關系和位置關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y=y1+y2,y1與x成正比例,y2與x成反比例,并且當x=1時y=4;當x=3時,y=5.求當x=4時,y的值.
解:∵y1與x成正比例,y2與x成反比例,可以設y1=kx,y2=.
又∵y=y1+y2,
∴y=kx+.
把x=1,y=4代入上式,解得k=2.
∴y=2x+.
∴當x=4時,y=2×4+=8
.
閱讀上述解答過程,其過程是否正確?若不正確,請說明理由,并給出正確的解題過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛客車從甲地開往乙地,一輛轎車從乙地開往甲地,兩車同時出發,兩車行駛x小時后,記客車離甲地的距離為y1千米,轎車離甲地的距離為y2千米,y1、y2關于x的函數圖象如圖.
(1)根據圖象,直接寫出y1、y2關于x的函數關系式;
(2)當兩車相遇時,求此時客車行駛的時間;
(3)兩車相距200千米時,求客車行駛的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形紙片內有100個點,連同三角形的頂點共103個點,其中任意三點都不共線.現以這些點為頂點作三角形,并把紙片剪成小三角形,這樣的小三角形的個數是( )
A. 299 B. 201 C. 205 D. 207
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線PA是一次函數y=x+1的圖象,直線PB是一次函數y=﹣2x+2的圖象.
(1)求A、B、P三點的坐標;
(2)求四邊形PQOB的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com