【題目】對任意一個三位數n,如果n滿足各數位上的數字互不相同,且都不為零,那么稱這個數為“相異數” .將一個“相異數”任意兩個數位上的數字對調后可以得到三個不同的新三位數,把這三個新三位數的和與111的商記為F(n).例如n=123,對調百位與十位上的數字得到213,對調百位與個位上的數字得到321,對調十位與個位上的數字得到132,這三個新三位數的和為213+321+132=666,666÷111=6,所以F(123) =6.
(1)計算:F(315),F(746);
(2)若s、t都是“相異數”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整數),當F(s)+F(t)=17時,求x、y的值.
【答案】(1)9 17 (2)
【解析】
(1)根據相異數的概念首先寫出對調的三個數,再求和,計算F(315),F(746)即可;
(2)首先根據題意計算F(s)和F(t),求解x和y的值即可.
(1)根據題意可得315的三個數的和為:315+531+153=999
所以999÷111=9
故F(315)=9
746的三個三位數的和為:746+674+467=1887
所以1887÷111=17
故F(746)=17
(2) s、t都是相異數,s=100x+42, t=160+y
F(s)=(100x+42+420+x+204+10x)÷111=x+6
F(t)=(160+y+601+10y+100y+16) ÷111=y+7
F(s)+F(t)=17
x+y=4
1≤x≤9,1≤y≤9,x、y都是正整數
或
或
s和t都是相異數
,
科目:初中數學 來源: 題型:
【題目】探尋“勾股數”:直角三角形三邊長是整數時我們稱之為“勾股數”,勾股數有多少?勾股數有規律嗎?
(1)請你寫出兩組勾股數.
(2)試構造勾股數.構造勾股數就是要尋找3個正整數,使他們滿足“兩個數的平方和(或差)等于第三數的平方”,即滿足以下形式:
① 2+ 2= 2;或② 2﹣ 2= 2
③要滿足以上①、②的形式,不妨從乘法公式入手.我們已經知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右邊也能寫成 2的形式,就能符合②的形式.
因此不妨設x=m2,y=n2,(m、n為任意正整數,m>n),請你寫出含m、n的這三個勾股數并證明它們是勾股數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF翻折,點A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長是( )
A. 1+3 B. 3+
C. 4+
D. 5+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D是∠ACB與∠ABC的角平分線的交點,BD的延長線交AC于點E.
(1)若∠A=80°,求∠BDC的度數;
(2)若∠EDC=40°,求∠A的度數;
(3)請直接寫出∠A與∠BDC之間的數量關系(不必說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】⊙O是△ABC的外接圓,AB是直徑,過的中點P作⊙O的直徑PG,與弦BC相交于點D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點P作AB的垂線,垂足為點H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點K、F,已知FK=2,△ODH的面積為2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經過點C,連接DE交AF于點M,觀察發現:點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于
的常數),直接用含k的代數式表示
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在長方形ABCD中,將△ABE沿著AE折疊至△AEF的位置,點F在對角線AC上,若BE=3,EC=5,則線段CD的長是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com