【題目】(1)化簡: (2)解方程:
.
【答案】(1) 或
;(2)x=-2.
【解析】(1)先把括號內通分,再把除法轉化為乘法,并把分子、分母分解因式約分化簡;
(2)兩邊都乘以最簡公分母2(x+3),把分式方程化為整式方程求解,求出x的值不要忘記檢驗.
(1)原式==
=
或
;
(2)解:去分母得:,
解得:x=﹣2,
經檢驗x=﹣2是分式方程的解,
∴原方程的解為x=﹣2
點睛:本題考查了分式的混合運算和解分式方程,熟練掌握分式的運算法則和解分式方程的方法是解答本題的關鍵.
【題型】解答題
【結束】
20
【題目】小張同學學完統計知識后,隨機調查了她所在轄區若干名居民的年齡,將調查數據繪制成如下扇形統計圖和條形統計圖:
請根據以上不完整的統計圖提供的信息,解答下列問題:
(1)小張同學共調查了 名居民的年齡,扇形統計圖中a= ;
(2)補全條形統計圖,并注明人數;
(3)若在該轄區中隨機抽取一人,那么這個人年齡是60歲及以上的概率為 ;
(4)若該轄區年齡在0~14歲的居民約有2400人,請估計該轄區居民有多少人?
科目:初中數學 來源: 題型:
【題目】某商店第一次用500元購進鋼筆若干支,第二次又用500元購進該款鋼筆,但這次每支的進價是第一次進價的 倍,購進數量比第一次少了25支.
(1)求第一次每支鋼筆的進價是多少元?
(2)若要求這兩次購進的鋼筆按同一價格全部銷售完畢后獲利不低于350元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“在線教育”指的是通過應用信息科技和互聯網技術進行內容傳播和快速學習的方法.“互聯網+”時代,中國的在線教育得到迅猛發展. 請根據下面張老師與記者的對話內容,求2014年到2016年中國在線教育市場產值的年平均增長率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校組建了書法、音樂、美術、舞蹈、演講五個社團,全校每一名學生都參加且只參加了其中一個社團的活動.校團委從全校學生中隨機選取部分學生進行了參加活動情況的調查,并將調查結果制成了如圖不完整的統計圖.請根據統計圖完成下列問題:
(1)參加本次調查有 名學生?
(2)根據調查數據分析,被調查的學生中有 名學生參加了音樂社團?
(3)請你補全條形統計圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下面的變形規律:
;
;
;….
解答下面的問題:
(1)仿照上面的格式請寫出= ;
(2)若n為正整數,請你猜想= ;
(3)基礎應用:計算:.
(4)拓展應用1:解方程: =2016
(5)拓展應用2:計算:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+
;
(2)先化簡,再求值:( ﹣x﹣1)÷
,其中x是不等式組
的一個整數解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在邊長為1個單位長度的小正方形組成的網格中,建立如圖所示的平面直角坐標系△ABC是格點三角形(頂點在網格線的交點上)
(1)先作△ABC關于原點O成中心對稱的△A1B1C1,再把△A1B1C1向上平移4個單位長度得到△A2B2C2;
(2)△A2B2C2與△ABC是否關于某點成中心對稱?若是,直接寫出對稱中心的坐標;若不是,請說明理由.
【答案】(1)畫圖見解析;(2)(0,2).
【解析】
(1)根據中心對稱和平移性質分別作出變換后三頂點的對應點,再順次連接可得;
(2)根據中心對稱的概念即可判斷.
(1)如圖所示,△A1B1C1和△A2B2C2即為所求;
(2)由圖可知,△A2B2C2與△ABC關于點(0,2)成中心對稱.
點睛:本題考查了中心對稱作圖和平移作圖,熟練掌握中心對稱的性質和平移的性質是解答本題的關鍵. 中心對稱的性質:①關于中心對稱的兩個圖形能夠完全重合;②關于中心對稱的兩個圖形,對應點的連線都經過對稱中心,并且被對稱中心平分.
【題型】解答題
【結束】
22
【題目】如圖,在矩形ABCD中,點E在AD上,且EC平分∠BED.
(1)△BEC是否為等腰三角形?證明你的結論.
(2)已知AB=1,∠ABE=45°,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.
(1)求a,b的值;
(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM//OB交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當S△ACN=S△PMN時,連接ON,點Q在線段BP上,過點Q作QR//MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ//BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com