【題目】已知a、b是一元二次方程x2+x﹣1=0的兩根,則a+b=_____.
科目:初中數學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.
【發(fā)現證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數,參考數據:
=1.41,
=1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=30°,BC=2,將△ABC繞點C按順時針方向旋轉n度后,得到△EDC,此時點D在AB邊上,斜邊DE交AC于點F,則n=_______; 圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點P(2,1)與點Q(2,﹣1),下列描述正確是( )
A. 關于x軸對稱 B. 關于y軸對稱 C. 關于原點對稱 D. 都在y=2x的圖象上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將等腰直角三角板放在正方形ABCD的頂點B處,且三角板中BE=EF.連AE,再作EG⊥AE且EG=AE.繞點B旋轉三角板,并保證線段FG與正方形的邊CD交于點H.
(1)求證:△ABE≌△GFE.
(2)當DH取得最小值時,求∠ABE的度數.
(3)當三角板有兩個頂點在邊BC上時,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,AE平分∠BAD交BC于E,若∠CAE=15°,則∠AEO=( )
A.30°
B.25°
C.22.5°
D.20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索與推斷:
(1)有四個數,把其中每三個數相加,其和分別為22,24,27,20.求這四個數分別為多少?
(2)觀察下列圖形中的點的個數,若按其規(guī)律再畫下去:
①請你畫出第4個圖形,并指出第4個圖形中的點的個數;
②第n個圖形中所有點的個數是多少?(用含n的代數式表示)
③若圖形中共有1600個點,則該圖是第幾個圖形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com