日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
課題學習:
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數量關系:
S1=2S2
S1=2S2

(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數量關系:
S1=2S2
S1=2S2

(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數量關系為:
S1=2S2
S1=2S2

(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數量關系,并加以證明.
分析:(1)連接AC、BD.先根據三角形中位線的性質得出EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,則四邊形EFGH為平行四邊形,再由正方形的對角線相等且互相垂直,得出EF=FG,EF⊥FG,從而證明?EFGH是正方形;利用相似多邊形的面積比等于相似比的平方可求得S1=2S2
(2)連接AC、BD.先根據三角形中位線的性質得出EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,則四邊形EFGH為平行四邊形,再由菱形的對角線互相垂直,得出EF⊥FG,從而證明?EFGH是矩形;利用相似三角形的面積比等于相似比的平方可求得S1=2S2
(3)先根據三角形中位線的性質得出EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,則四邊形EFGH為平行四邊形,再由AC⊥BD,得出EF⊥FG,從而證明?EFGH是矩形;利用相似多邊形的面積比等于相似比的平方可求得S1=2S2
(4)過點H作HM⊥AB于M,延長MH交CD于N,先由垂線的唯一性得出MN為平行四邊形ABCD的邊AB、DC上的高,再根據三角形的面積公式得出S△AEH+S△DHG=
1
4
AB•MN=
1
4
S?ABCD,同理得出S△BEF+S△CFG=
1
4
AB•PQ=
1
4
S?ABCD,進而求出S?EFGH=
1
2
S?ABCD,即S1=2S2
解答:解:(1)如圖1.連接AC、BD.
∵E、F、G、H分別是正方形ABCD各邊的中點,
∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,
∴四邊形EFGH為平行四邊形,
∵四邊形ABCD是正方形,
∴AC=BD,AC⊥BD,
∴EF=FG,EF⊥FG,
∴?EFGH是正方形;
∵正方形ABCD∽正方形EFGH,
∴S1:S2=(AB:EF)2=(2BE:
2
BE)2=(2:
2
2=2,
∴S1=2S2

(2)如圖2.連接AC、BD.
∵E、F、G、H分別是菱形ABCD各邊的中點,
∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,
∴四邊形EFGH為平行四邊形,
∵四邊形ABCD是菱形,
∴AC⊥BD,
∴EF⊥FG,
∴?EFGH是矩形;
在△ABD中,∵EH∥BD,
∴△AEH∽△ABD,
∵EH=
1
2
BD,
∴S△AEH:S△ABD=(EH:BD)2=
1
4
,即S△AEH=
1
4
S△ABD
同理可證:S△CFG=
1
4
S△CBD
∴S△AEH+S△CFG=
1
4
(S△ABD+S△CBD)=
1
4
S菱形ABCD
同理可得S△BEF+S△DHG=
1
4
(S△ABC+S△CDA)=
1
4
S菱形ABCD
∴S△AEH+S△CFG+S△BEF+S△DHG=
1
2
S菱形ABCD
∴S矩形EFGH=S菱形ABCD-(S△AEH+S△CFG+S△BEF+S△DHG)=
1
2
S菱形ABCD
∴S1=2S2

(3)如題目圖3.∵E、F、G、H分別是梯形ABCD各邊的中點,
∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=
1
2
BD,EF=HG=
1
2
AC,
∴四邊形EFGH為平行四邊形,
∵AC⊥BD,
∴EF⊥FG,
∴?EFGH是矩形;
在△ABD中,∵EH∥BD,
∴△AEH∽△ABD,
∵EH=
1
2
BD,
∴S△AEH:S△ABD=(EH:BD)2=
1
4
,即S△AEH=
1
4
S△ABD
同理可證:S△CFG=
1
4
S△CBD
∴S△AEH+S△CFG=
1
4
(S△ABD+S△CBD)=
1
4
S梯形ABCD
同理可得S△BEF+S△DHG=
1
4
(S△ABC+S△CDA)=
1
4
S梯形ABCD
∴S△AEH+S△CFG+S△BEF+S△DHG=
1
2
S梯形ABCD
∴S矩形EFGH=S梯形ABCD-(S△AEH+S△CFG+S△BEF+S△DHG)=
1
2
S梯形ABCD
∴S1=2S2

(4)S1=2S2.理由如下:
如圖4.過點H作HM⊥AB于M,延長MH交CD于N.
∵AB∥CD,HM⊥AB,
∴HM⊥CD,即MN⊥CD,則MN為平行四邊形ABCD的邊AB、DC上的高.
∵E、G分別是平行四邊形ABCD的邊AB、DC的中點,
∴AE=BE=CG=GD=
1
2
AB=
1
2
CD.
∵S△AEH=
1
2
AE•HM=
1
4
AB•HM,S△DHG=
1
2
GD•HN=
1
4
CD•HN,
∴S△AEH+S△DHG=
1
4
AB•HM+
1
4
CD•HN=
1
4
AB(HM+HN)=
1
4
AB•MN=
1
4
S?ABCD
同理可得S△BEF+S△CFG=
1
4
AB•FQ+
1
4
CD•FP=
1
4
AB(FQ+FP)=
1
4
AB•PQ=
1
4
S?ABCD
∴S△AEH+S△CFG+S△BEF+S△DHG=
1
2
S?ABCD
∴S?EFGH=S?ABCD-(S△AEH+S△CFG+S△BEF+S△DHG)=
1
2
S?ABCD
∴S1=2S2
點評:本題考查了三角形中位線的性質,特殊四邊形的判定和性質,相似多邊形的性質,多邊形的面積,綜合性較強,有一定難度.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數學問題的課題學習活動.

活動情境:

如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,FN與DC交于點M處,連接BF與EG交于點P.

 所得結論:

當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):

甲:△AEF的邊AE=     cm,EF=     cm;

乙:△FDM的周長為16 cm;

丙:EG=BF.

 你的任務:

1.填充甲同學所得結果中的數據;

2.  寫出在乙同學所得結果的求解過程;

3.當點F在AD邊上除點A、D外的任何一處(如圖2)時:

① 試問乙同學的結果是否發生變化?請證明你的結論;

② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數關系式,并問當x為何值時,S最大?最大值是多少?

 

查看答案和解析>>

科目:初中數學 來源: 題型:

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,FN與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=     cm,EF=    cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務:
【小題1】填充甲同學所得結果中的數據;
【小題2】 寫出在乙同學所得結果的求解過程;
【小題3】當點F在AD邊上除點A、D外的任何一處(如圖2)時:
① 試問乙同學的結果是否發生變化?請證明你的結論;
② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2012年江西省中等學校招生統一考試數學卷(一) 題型:解答題

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,FN與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=     cm,EF=    cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務:
【小題1】填充甲同學所得結果中的數據;
【小題2】 寫出在乙同學所得結果的求解過程;
【小題3】當點F在AD邊上除點A、D外的任何一處(如圖2)時:
① 試問乙同學的結果是否發生變化?請證明你的結論;
② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2012年江西省等學校招生統一考試數學卷(一) 題型:解答題

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數學問題的課題學習活動.

活動情境:

如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,FN與DC交于點M處,連接BF與EG交于點P.

 所得結論:

當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):

甲:△AEF的邊AE=      cm,EF=     cm;

乙:△FDM的周長為16 cm;

丙:EG=BF.

 你的任務:

1.填充甲同學所得結果中的數據;

2.  寫出在乙同學所得結果的求解過程;

3.當點F在AD邊上除點A、D外的任何一處(如圖2)時:

① 試問乙同學的結果是否發生變化?請證明你的結論;

② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數關系式,并問當x為何值時,S最大?最大值是多少?

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 九九色综合| 精品无码久久久久久国产 | 午夜久久 | 国产精品视频在线观看 | 国产视频福利在线 | 超碰免费av | 99pao成人国产永久免费视频 | 亚洲一区二区三区视频 | 亚洲综合色自拍一区 | 亚洲黄色一区二区 | 亚洲毛片在线 | 国产成人精品一区二区在线 | 久草精品视频在线播放 | 成人av网站在线 | 日日爱视频 | 日韩av在线影院 | 97国产精品视频人人做人人爱 | 国产精品久久久久久久久久新婚 | 欧美性猛交一区二区三区精品 | 欧美激情一区二区三区在线观看 | 日韩精品小视频 | 97国产免费| 日韩福利在线观看 | 亚洲一二三在线 | 99av| 美女天堂网 | 亚洲精品乱码久久久久v最新版 | 欧日韩在线观看视频 | 精品国产欧美 | 日韩一级片免费在线观看 | 一区二区中文字幕在线观看 | 精品国产一区二区三区性色 | 日韩不卡一区 | 蜜臀久久精品 | 色欧美片视频在线观看 | 欧美日韩视频网站 | 欧美色图网站 | 99精品视频一区二区三区 | 国产高清中文字幕 | 日韩av福利 | 国产综合一区二区 |