日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據圖④說明理由.

【答案】分析:(1)由題意易證出AG=AD,DH=DB,而AD=DB,可得AG=DH;
(2)可由證△AMD≌△DNB,再證△AMG≌△DNH,證出AG=DH;
(3)可證Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD,證出AG=DH.
解答:解:(1)∵α=30°,
∴∠ADM=30°,
∵∠A=30°,
∴∠ADM=∠A.
∴AM=DM.
又∵MG⊥AD于G,
∴AG=AD.
∵∠CDB=180°-∠EDF-∠ADM=60°,∠B=60°,
∴△CDB是等邊三角形.
又∵CH⊥DB于H,
∴DH=DB.
∵在△ABC中,∠ACB=90°,∠A=30°,
∴BC=AB.
∵BC=BD,
∴AD=DB.
∴AG=DH.

(2)結論成立.理由如下:
在△AMD與△DNB中,∠A=∠NDB=30°,AD=DB,∠MDA=∠B=60°,
∴△AMD≌△DNB,
∴AM=DN.
又∵在△AMG與△DNH中,∠A=∠NDB,∠MGA=∠NHD=90°,
∴△AMG≌△DNH.
∴AG=DH.

(3)方法一:解:結論成立.
Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD.
∵∠C=∠MDN=90°
∴C,D兩點在以MN為直徑的圓上,
∴C,M,D,N四點共圓
∴∠DNM=∠DCA=30°,
∴DN=DM
又∵△DGM∽△NHD,
∴DH=MG=AG.
方法二:
解:當0°<α<90°時,(1)中的結論成立.
在Rt△AMG中,∠A=30°,
∴∠AMG=60°=∠B.
又∠AGM=∠NHB=90°,
∴△AGM∽△NHB.

∵∠MDG=α,
∴∠DMG=90°-α=∠NDH.
又∠MGD=∠DHN=90°,
∴Rt△MGD∽Rt△DHN.
=
①×②,得.=
由比例的性質,得 =
∵AD=DB,
∴AG=DH.
點評:此題主要考查圖形的旋轉,直角三角形的性質,三角形全等的判定,三角形相似的判定及性質的靈活運用.此題用同學們常用的一副三角板作為情境,培養同學們靈活運用知識的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據圖④說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》中考題集(20):25.2 旋轉變換(解析版) 題型:解答題

(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據圖④說明理由.

查看答案和解析>>

科目:初中數學 來源:第29章《相似形》中考題集(21):29.5 相似三角形的性質(解析版) 題型:解答題

(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據圖④說明理由.

查看答案和解析>>

科目:初中數學 來源:2006年湖北省武漢市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•武漢)(北師大版)已知:將一副三角板(Rt△ABC和Rt△DEF)如圖1擺放,點E、A、D、B在一條直線上,且D是AB的中點.將Rt△DEF繞點D順時針方向旋轉角α(0°<α<90°),在旋轉過程中,直線DE、AC相交于點M,直線DF、BC相交于點N,分別過點M、N作直線AB的垂線,垂足為G、H.
(1)當α=30°時(如圖2),求證:AG=DH;
(2)當α=60°時(如圖3),(1)中的結論是否成立?請寫出你的結論,并說明理由;
(3)當0°<α<90°時,(1)中的結論是否成立?請寫出你的結論,并根據圖④說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天草av| 91在线观看| 亚洲人成人一区二区在线观看 | 日本一区二区三区四区 | 黄色免费网站视频 | 久久国产精品免费一区二区三区 | 国产成人免费视频网站高清观看视频 | 国产精品久久嫩一区二区 免费 | 免费v片在线观看 | 久久国产精品视频 | 日比视频网站 | 亚洲精品在线播放视频 | www.久草.com| 欧美成人一区二区三区 | www.日韩.com| 亚洲精品日韩综合观看成人91 | 国产黄a | 亚洲精品99 | av在线官网| 国产毛片一区二区 | 香蕉一区 | 欧美日韩亚洲成人 | 国产黄色av | 亚洲色域网 | 亚洲精品一区二区另类图片 | 亚洲男人av| 日韩一区二区免费视频 | 成人av影院 | 亚洲码欧美码一区二区三区 | 日韩一级免费在线观看 | 日韩一区二区视频 | 国产二区视频 | 日日摸夜夜添夜夜添特色大片 | 偷派自拍| 成人伊人网 | 日本精品免费 | 欧美极品一区二区 | 欧美国产日韩在线观看 | 国产视频久久久久 | 欧美精品99| 在线99视频 |