【題目】動手操作:(不要求寫作法和證明,只保留作圖痕跡)
(1)如圖所示,以點
為對稱中心,畫出與
成中心對稱的圖形
.
(2)如圖所示,將
繞點
旋轉后,頂點
旋轉到了
處,試畫出旋轉后的
.
科目:初中數學 來源: 題型:
【題目】如圖所示,已知:點A(0,0),B(,0),C(0,1)在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第
個等邊三角形的邊長等于__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們給出如下定義:有一組相鄰內角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某學校有一邊長為20米的正方形區域(四周陰影是四個全等的矩形,記為區域甲;中心區是正方形
,記為區域乙).區域甲建設成休閑區,區域乙建成展示區,已知甲、乙兩個區域的建設費用如下表:
區域 | 甲 | 乙 |
價格(百元米2) | 6 | 5 |
設矩形的較短邊的長為
米,正方形
區域建設總費用為
百元.
(1)的長為 米(用含
的代數式表示);
(2)求關于
的函數解析式;
(3)當中心區的邊長要求不低于8米且不超過12米時,預備建設資金220000元夠用嗎?請利用函數的增減性來說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,繪出的某一結果出現的頻率折線圖,則符合這一結果的實驗可能是( )
A. 拋一枚硬幣,出現正面朝上
B. 擲一個正六面體的骰子,出現3點朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內的一點,且PA=3,PB=4,PC=5,將△ABP繞點B順時針旋轉60°到△CBQ位置.連接PQ,則以下結論錯誤的是( )
A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是拋物線y=ax2+bx+c與x軸的兩個交點B,C的橫坐標,且此拋物線過點A(3,6).
(1)求此二次函數的解析式;
(2)寫出不等式ax2+bx+c≥0的解集;
(3)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標;
(4)在x軸上有一動點M,當MQ+MA取得最小值時,求M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業設計了一款工藝品,每件成本40元,出于營銷考慮,要求每件售價不得低于40元,但物價部門要求每件售價不得高于60元.據市場調查,銷售單價是50元時,每天的銷售量是100件,而銷售單價每漲1元,每天就少售出2件,設單價上漲元
.
(1)求當為多少時每天的利潤是1350元?
(2)設每天的銷售利潤為,求銷售單價為多少元時,每天利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com