【題目】如圖,把正方形ABCD繞點C按順時針方向旋轉得到正方形
此時,點
落在對角線AC上,點
落在CD的延長線上
,
交AD于點E,連接
、CE.
求證:(1)≌
;
(2)直線CE是線段的垂直平分線.
科目:初中數學 來源: 題型:
【題目】已知二次函數(
,
為常數).
(1)若該拋物線的頂點坐標為,求二次函數的解析式;
(2)若該函數在的情況下,只有一個自變量
的值與其對應,
①求的最小值;
②當自變量的值滿足
的情況下,與其對應的函數值
的最小值為6,求此時二次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC、BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=3,則下列結論:①;②S△BCE=30;③S△ABE=9;④△AEF∽△ACD,其中一定正確的是( )
A.①②③④B.①③C.②③④D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的頂點為
,與
軸相交于點
,對稱軸為直線
,點
是線段
的中點.
(1)求拋物線的表達式;
(2)寫出點的坐標并求直線
的表達式;
(3)設動點,
分別在拋物線和對稱軸l上,當以
,
,
,
為頂點的四邊形是平行四邊形時,求
,
兩點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于點F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉45°后得到正方形,依此方式,繞點O連續旋轉2018次得到正方形
,如果點A的坐標為(1,0),那么點
的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A(13,0),直線y=kx﹣3k+4與⊙O交于B、C兩點,則弦BC的長的最小值為( ).
A.22 B.24 C.10 D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:
數學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.
理解:
⑴如圖,已知
是⊙
上兩點,請在圓上找出滿足條件的點
,使
為“智慧三角形”(畫出點
的位置,保留作圖痕跡);
⑵如圖,在正方形
中,
是
的中點,
是
上一點,且
,試判斷
是否為“智慧三角形”,并說明理由;
運用:
⑶如圖,在平面直角坐標系
中,⊙
的半徑為
,點
是直線
上的一點,若在⊙
上存在一點
,使得
為“智慧三角形”,當其面積取得最小值時,直接寫出此時點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結論:①2a﹣b=0:②4ac﹣b2<0:③點(x1,y1),(x2,y2)在拋物線上若x1<x2,則y1<y2;④a+b+c<0.正確結論的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com