如圖所示,AB是⊙O的直徑,OD⊥弦BC于點F,且交⊙O于點E,若∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當AB=10,BC=8時,求BD的長.
(1)答:BD和⊙O相切.
證明:∵OD⊥BC,
∴∠OFB=∠BFD =90°,
∴∠D+∠3=90°.
∵∠4=∠D=∠2, ……………………………1分
∴∠2+∠3=90°,
∴∠OBD=90°,
即OB⊥BD.
∵點B在⊙O上,
∴BD和⊙O相切. ……………………………2分
(2) ∵OD⊥BC,BC=8,
∴BF=FC=4. ……………………………3分
∵ AB=10,
∴OB=OA=5.
在Rt△OFB中, ∠OFB =90°,
∵OB=5,BF=4,
∴OF=3. ……………………………4分
∴tan∠1=.
在Rt△OBD中, ∠OBD =90°,
∵tan∠1=, OB=5,
∴. …………………………… 5分
解析:略
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com