如圖,直線AC∥BD,連結AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規定:線上各點不屬于任何部分.當動點P落在某個部分時,連結PA,PB,構成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角.)
(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
(3)當動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關系,并寫出動點P的具體位置和相應的結論.選擇其中一種結論加以證明.
(1)解法一:如圖1 延長BP交直線AC于點E ∵AC∥BD,∴∠PEA=∠PBD. ∵∠APB=∠PAE+∠PEA, ∴∠APB=∠PAC+∠PBD. 解法二:如圖2 過點P作FP∥AC, ∴∠PAC=∠APF. ∵AC∥BD,∴FP∥BD. ∴∠FPB=∠PBD. ∴∠APB=∠APF+∠FPB=∠PAC+∠PBD. 解法三:如圖3, ∵AC∥BD,∴∠CAB+∠ABD=180° 即∠PAC+∠PAB+∠PBA+∠PBD=180°. 又∠APB+∠PBA+∠PAB=180°, ∴∠APB=∠PAC+∠PBD. (2)不成立. (3)(a)當動點P在射線BA的右側時,結論是∠PBD=∠PAC+∠APB. (b)當動點P在射線BA上,結論是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任寫一個即可). (c)當動點P在射線BA的左側時, 結論是∠PAC=∠APB+∠PBD. 選擇(a)證明: 如圖4,連接PA,連接PB交AC于M ∵AC∥BD, ∴∠PMC=∠PBD. 又∵∠PMC=∠PAM+∠APM, ∴∠PBD=∠PAC+∠APB. 選擇(b)證明:如圖5 ∵點P在射線BA上,∴∠APB=0°. ∵AC∥BD,∴∠PBD=∠PAC. ∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD. 選擇(c)證明: 如圖6,連接PA,連接PB交AC于F ∵AC∥BD,∴∠PFA=∠PBD. ∵∠PAC=∠APF+∠PFA, ∴∠PAC=∠APB+∠PBD. |
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
| ||||
|
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com