【答案】
分析:(1)利用圓周角定理和圓的半徑相等即可證明∠ODE=90°,即OD⊥DE;
(2)由(1)可知AD為∠EAB的角平分線,利用角平分線的性質:到角的兩邊距離相等和勾股定理即可求出AD的長.
解答:(1)證明:∵D為

的中點,
∴∠1=∠2,
∵OD=OA,

∴∠2=∠3,
∴∠1=∠3,
∵DE⊥AC于E,
∴∠1+∠EDA=90°,
∴∠3+∠EDA=90°,
∴OD⊥DE;
(2)解:由(1)知∠1=∠2,
又∵DE⊥AC于E,DF⊥AB于F.
∴DE=DF=3,
∵AE=6,
∴在Rt△AED中,AD=

=

=3

.
點評:本題考查了圓周角定理:在同圓和等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.也考查了角平分線的性質以及勾股定理的運用.