【題目】如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發,以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉一個角α(α=∠BCD),得到對應線段CF.
(1)求證:BE=DF;
(2)當t= 秒時,DF的長度有最小值,最小值等于 ;
(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?
(4)如圖3,將線段CD繞點C順時針旋轉一個角α(α=∠BCD),得到對應線段CG.在點E的運動過程中,當它的對應點F位于直線AD上方時,直接寫出點F到直線AD的距離y關于時間t的函數表達式.
【答案】(1)證明見解析;(2),12;(3)t=6或t=
;(4)
.
【解析】
試題分析:(1)由∠ECF=∠BCD得∠DCF=∠BCE,結合DC=BC、CE=CF證△DCF≌△BCE即可得;
(2)當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據AB=CD=,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=;
(4)連接GF分別角直線AD、BC于點M、N,過點F作FH⊥AD于點H,證△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,從而知四邊形CDMN是平行四邊形,由平行四邊形得MN=CD=;再由∠CGN=∠DCN=∠CNG知CN=CG=CD=
,根據tan∠ABC=tan∠CGN=2可得GM=
+12,由GF=DE=t得FM=t﹣
﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.
試題解析:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵CF=CE,∠DCF=∠BCE,CD=CB,∴△DCF≌△BCE(SAS),∴DF=BE;
(2)如圖1,當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=,tan∠ABC=tan∠BAE′=2,∴設AE′=x,則BE′=2x,∴AB=
x=
,則AE′=6,∴DE′=
+6,DF=BE′=12,故答案為:
,12;
(3)∵CE=CF,∴∠CEQ<90°,①當∠EQP=90°時,如圖2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;
②當∠EPQ=90°時,如圖2②,∵菱形ABCD的對角線AC⊥BD,∴EC與AC重合,∴DE=,∴t=
秒;
綜上所述:t=6或t=.
(4).如圖3,連接GF分別角直線AD、BC于點M、N,過點F作FH⊥AD于點H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵EC=FC,∠DCE=∠GCF,DC=GC,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四邊形CDMN是平行四邊形,∴MN=CD=
,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=
,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=
+12,∵GF=DE=t,∴FM=t﹣
﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=
(t﹣
﹣12),即
.
科目:初中數學 來源: 題型:
【題目】下列關于有理數的加法說法錯誤的是( )
A.同號兩數相加,取相同的符號,并把絕對值相加
B.異號兩數相加,絕對值相等時和為0
C.互為相反數的兩數相加得0
D.絕對值不等時,取絕對值較小的數的符號作為和的符號
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在課外實踐活動中,甲、乙、丙、丁四個小組用投擲一元硬幣的方法估算正面朝上的概率,其實驗次數分別為10次、50次、100次,200次,其中實驗相對科學的是( )
A.甲組
B.乙組
C.丙組
D.丁組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的垂直平分線DE交邊BC于點D,交邊AB于點E.若△EDC的周長為24,△ABC與四邊形AEDC的周長之差為12,則線段DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數量關系.
猜想結論:(要求用文字語言敘述) 寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,任意兩點A(,
),B(
,
),規定運算:①A⊕B=(
,
);②AB=
;③當
且
時,A=B,有下列四個命題:(1)若A(1,2),B(2,﹣1),則A⊕B=(3,1),AB=0;
(2)若A⊕B=B⊕C,則A=C;
(3)若AB=BC,則A=C;
(4)對任意點A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正確命題的個數為( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com