日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】解下列方程組

1

2

3

【答案】(1);(2;(3

【解析】

(1)首先由方程①求出x的值,然后將x的值代入②中,即可求出y的值.

(2) 方程組利用代入消元法求出解即可;

(3) 根據代入消元法,化三元一次方程組為二元一次方程組,再根據加減消元法,可得一元一次方程,求出一元一次方程的解,再逐步代入,可得方程組的解.

解:(1)由①得:x2

x2代入②得:y5

則方程組的解為

2

+×4得:9x54

解得:x6

x6代入②得:y=﹣1

則方程組的解為

3)把①代入②得:2x3y+2y+x)=5

整理得:4xy5④,

把①代入③得:x+2y+y+x13

整理得:2x+3y13⑤,

×3+⑤得:14x28

解得:x2

x2代入④得:y3

x2y3代入①得:z5

則方程組的解為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數的解析式;
(2)設該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發,都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC的頂點坐標分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應點為D,拋物線y=ax2﹣10ax+c經過點C,頂點M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點A3 , 作正方形A3B3C3B4 , …,依此規律,則A2016A2017=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCDCF平分∠ECDHCCF交直線ABHAG平分∠HAEHCGEJAGCFJ,∠AEC80°,則下列結論正確的有(  )個.

①∠BAE+ECD80°;②CG平分∠ICE;③∠AGC140°;④∠EJC﹣∠AGH90°

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】等腰RtACB,∠ACB90°,ACBC,點AC分別在x軸、y軸的正半軸上.

1)如圖1,求證:∠BCO=∠CAO

2)如圖2,若OA5OC2,求B點的坐標

3)如圖3,點C03),QA兩點均在x軸上,且SCQA18.分別以ACCQ為腰在第一、第二象限作等腰RtCAN、等腰RtQCM,連接MNy軸于P點,OP的長度是否發生改變?若不變,求出OP的值;若變化,求OP的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點A(﹣3,0)、點B(9,0),與y軸交于點C,頂點為D,連接AD、DB,點P為線段AD上一動點.
(1)求拋物線的解析式;
(2)如圖1,過點P作BD的平行線,交AB于點Q,連接DQ,設AQ=m,△PDQ的面積為S,求S關于m的函數解析式,以及S的最大值;

(3)如圖2,拋物線對稱軸與x軸交與點G,E為OG的中點,F為點C關于DG對稱的對稱點,過點P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫出△PMN為等腰三角形時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明:

如圖,BE平分∠ABDDE平分∠BDC,且∠α+β=90°,求證:ABCD

證明:∵BE平分∠ABD(已知),∴∠ABD=2α(  )

DE平分∠BDC(  )

∴∠BDC=  (  ),∴∠ABD+BDC=2α+2β=2(α+β)(等量代換)

∵∠α+β=90°(已知),∴∠ABD+BDC=(  ),∴ABCD(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲色图网站 | 91亚洲狠狠婷婷综合久久久 | 日本视频一区二区三区 | 国产精品久久久久久久久久久久久久 | 国产成人在线免费观看 | 亚洲六月丁香色婷婷综合久久 | 成人免费淫片aa视频免费 | 久久久久久av | 青青草亚洲 | 老司机午夜免费精品视频 | 久久久国产一区二区三区四区小说 | 日韩在线观看一区 | 超碰香蕉| 一区二区三区视频免费在线观看 | 色涩色 | 999久久久免费精品国产 | 日韩成人在线播放 | 国产成人啪精品午夜在线观看 | 免费观看黄色一级大片 | 一区二区三区精品视频 | 国产免费黄色 | 亚洲国产精品久久久久秋霞不卡 | 欧美成人高清视频 | 黄色电影在线免费观看 | 免费大片黄 | 国产成人免费av一区二区午夜 | 密室大逃脱第六季大神版在线观看 | 中国黄色一级毛片 | 久久精品视频亚洲 | 狠狠躁夜夜躁人人爽天天高潮 | 国产成人精品视频在线观看 | 日本超碰 | 国产精品热 | 国产综合久久 | 综合网激情五月 | 欧美一区二区久久久 | 国产精品久久国产精品 | 成人高清在线观看 | 中文字幕欧美在线观看 | 97伦理电影院 | 伊人免费视频二 |