分析 (1)根據旋轉的性質得CE=CH=1,即可得出結論;
(2)由G為BC中點可得CG=CE,根據旋轉的性質得∠D′CE′=∠DCE=90°,CE=CE′CE,則∠GCD′=∠DCE′=90°+α,然后根據“SAS”可判斷△GCD′≌△E′CD,則GD′=E′D;
(3)根據正方形的性質得CB=CD,而CD=CD′,則△BCD′與△DCD′為腰相等的兩等腰三角形,當兩頂角相等時它們全等,當△BCD′與△DCD′為鈍角三角形時,可計算出α=135°,當△BCD′與△DCD′為銳角三角形時,可計算得到α=315°.
解答 (1)解:
∵長方形CEFD繞點C順時針旋轉至CE′F′D′,
∴CE=CH=1,
∴△CEH為等腰直角三角形,∴∠ECH=45°,∴∠α=30°;
(2)證明:∵G為BC中點,
∴CG=1,
∴CG=CE,
∵長方形CEFD繞點C順時針旋轉至CE′F′D′,
∴∠D′CE′=∠DCE=90°,CE=CE′=CG,
∴∠GCD′=∠DCE′=90°+α,
在△GCD′和△E′CD中$\left\{\begin{array}{l}{CD'=CD}\\{∠GCD=DCE'}\\{CG=CE'}\end{array}\right.$,
∴△GCD′≌△E′CD(SAS),
∴GD′=E′D;
(3)解:能.
理由如下:
∵四邊形ABCD為正方形,
∴CB=CD,
∵CD′=CD′,
∴△BCD′與△DCD′為腰相等的兩等腰三角形,
當∠BCD′=∠DCD′時,△BCD′≌△DCD′,
當△BCD′與△DCD′為鈍角三角形時,則旋轉角α=$\frac{360°-90°}{2}$=135°,
當△BCD′與△DCD′為銳角三角形時,∠BCD′=∠DCD′=$\frac{1}{2}$∠BCD=45°
則α=360°-$\frac{90°}{2}$=315°,
即旋轉角a的值為135°或315°時,△BCD′與△DCD′全等
點評 此題是四邊形綜合題,主要考查了旋轉的性質:旋轉前后兩圖形全等;對應點到旋轉中心的距離相等;對應點與旋轉中心的連線段的夾角等于旋轉角.也考查了正方形、矩形的性質以及三角形全等的判定與性質.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com