(2012•門頭溝區一模)閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在正方形ABCD中,點E、F分別為DC、BC邊上的點,∠EAF=45°,連接EF,求證:DE+BF=EF.

小偉是這樣思考的:要想解決這個問題,首先應想辦法將這些分散的線段集中到同一條線段上.他先后嘗試了平移、翻折、旋轉的方法,發現通過旋轉可以解決此問題.他的方法是將△ADE繞點A順時針旋轉90°得到△ABG(如圖2),此時GF即是DE+BF.
請回答:在圖2中,∠GAF的度數是
45°
45°
.
參考小偉得到的結論和思考問題的方法,解決下列問題:
(1)如圖3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點,若∠BAE=45°,DE=4,則BE=
.
(2)如圖4,在平面直角坐標系xOy中,點B是x軸上一動點,且點A(-3,2),連接AB和AO,并以AB為邊向上作正方形ABCD,若C(x,y),試用含x的代數式表示y,則y=
x+1
x+1
.