日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

【答案】分析:(1)已知了△DOC的面積,那么xc•|yc|=xc2,因此=,根據圓的半徑為5,根據勾股定理可得出C點橫坐標的平方與縱坐標的平方的和為25,據此可求出C點的坐標.
(2)①根據四點坐標線求出兩拋物線的解析式,然后比較h,h1的值即可.
②本題考慮兩個極限值即可:
一:當T運動到B點時,T與K,B重合,B點為拋物線的頂點,此時yK最小.
二:當T運動到F點時,T、F重合,此時過F、B、C的拋物線的yK值最大,由此可得出yK的取值范圍.
解答:解:(1)yB=5=半徑;xCyC=xC2,xC2+y2C=25,
得C(4,3)(2分)和C(4,-3)

(2)①過點P(4,3)、Q(3,5)的拋物線y=ax2+h
即為y=-x2+,得h=
過P1(p+1,3)、Q1(p,5)的拋物線y=a1x2+h1
為y=-•x2+
h1=
h-h1=-
==
∵MQ>M1Q1,其中MQ=6,
∴0≤p=M1Q1<3,可知0≤p<3;
∴7p+3>0,2p+1>0,3-p>0,
因而得到h-h1>0,證得h>h1
或者說明2p+1>0,-14p2+36p+18在0≤p<3時總是大于0,
得到h-h1>0.
②顯然拋物線y=ax2+bx+c的開口方向向下,a<0.
當T運動到B點時,這時B、T、K三點重合即B為拋物線的頂點,∴yK≥5;
將過點T、B、C三點的拋物線y=ax2+bx+c沿x軸平移,使其對稱軸為y軸,這時yK不變.
則由上述①的結論,
當T在FB上運動時,過F(-3,5)、B(3,5)、C(4,3)三點的拋物線的頂點為最高點,
∴yK
∴5≤yK
點評:本題主要考查了勾股定理、坐標與圖形性質、等腰梯形的性質以及二次函數的綜合應用等知識點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于
38
xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=a0x2+h0過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h0>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.
精英家教網

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(49):2.8 二次函數的應用(解析版) 題型:解答題

已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2012年浙江省杭州市西湖區中考數學模擬試卷(七)(解析版) 題型:解答題

已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2005•宜昌)已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人一区二区三区 | 久热精品视频 | 国产精品久久久久久亚洲调教 | 成人在线免费观看 | 成人国产精品视频 | 日韩不卡一区二区 | hd国产人妖ts另类视频 | 久久福利| 欧美午夜精品久久久久免费视 | 久久久久91| 日韩福利视频 | 久久夜夜操| 亚洲一区二区三区在线播放 | 国产在线免费 | 久久久久久免费毛片精品 | 日本黄色免费大片 | 亚洲免费黄色 | 精品三级| 午夜精品久久久久久久久久久久久 | 91精品国产乱码久久久久久 | 国产免费av在线 | 国产私拍视频 | 国产成人免费观看 | 色小妹一二三区 | 九九热精品免费视频 | 最新版天堂资源中文在线 | 亚洲精品福利 | 国产涩涩| 精品久久久久久久久久久久久 | 成人午夜免费网站 | 国产亚洲欧美在线 | 精品亚洲一区二区三区在线观看 | 午夜精品美女久久久久av福利 | 欧美亚洲高清 | 精品久久一区二区 | japan国产精选videos | 精品国产一区二区三区久久 | 日本免费一区二区视频 | 亚洲男人的天堂网站 | 亚洲三级在线观看 | 欧美一级淫片免费看 |