日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】問題的提出:

如果點P是銳角ABC內一動點,如何確定一個位置,使點PABC的三頂點的距離之和PA+PB+PC的值為最小?

問題的轉化:

(1)ΔAPC繞點A逆時針旋轉60度得到連接這樣就把確定PA+PB+PC的最小值的問題轉化成確定的最小值的問題了,請你利用如圖證明:

問題的解決:

(2)當點P到銳角ABC的三項點的距離之和PA+PB+PC的值為最小時,請你用一定的數量關系刻畫此時的點P的位置:_____________________________

問題的延伸:

(3)如圖是有一個銳角為30°的直角三角形,如果斜邊為2,點P是這個三角形內一動點,請你利用以上方法,求點P到這個三角形各頂點的距離之和的最小值.

【答案】1)證明見解析;(2)∠APB=APC=120°;(3

【解析】

1)問題的轉化:

根據旋轉的性質證明APP'是等邊三角形,則PP'=PA,可得結論;

2)問題的解決:

運用類比的思想,把APC繞點A逆時針旋轉60度得到AP′C′,連接PP′,由問題的轉化可知:當BPP'C'在同一直線上時,PA+PB+PC的值為最小,確定當:∠APB=APC=120°時,滿足三點共線;

3)問題的延伸:

如圖3,作輔助線,構建直角ABC',利用勾股定理求AC'的長,即是點P到這個三角形各頂點的距離之和的最小值.

問題的轉化:

如圖1

由旋轉得:∠PAP'=60°PA=P'A

∴△APP'是等邊三角形,

PP'=PA

PC=P'C

PA+PB+PC=BP+PP′+P′C′

問題的解決:

滿足:∠APB=APC=120°時,PA+PB+PC的值為最小;

理由是:如圖2,把APC繞點A逆時針旋轉60度得到AP′C′,連接PP′

問題的轉化可知:當BPP'C'在同一直線上時,PA+PB+PC的值為最小,

∵∠APB=120°,∠APP'=60°

∴∠APB+APP'=180°

BPP'在同一直線上,

由旋轉得:∠AP'C'=APC=120°

∵∠AP'P=60°

∴∠AP'C'+AP'P=180°

PP'C'在同一直線上,

BPP'C'在同一直線上,

∴此時PA+PB+PC的值為最小,

故答案為∠APB=APC=120°

問題的延伸:

如圖3

RtACB中,∵AB=2,∠ABC=30°

AC=1BC=

BPC繞點B逆時針旋轉60度得到BP′C′,連接PP′

APP'C'在同一直線上時,PA+PB+PC的值為最小,

由旋轉得:BP=BP',∠PBP'=60°PC=P'C'BC=BC'

∴△BPP′是等邊三角形,

PP'=PB

∵∠ABC=APB+CBP=APB+C'BP'=30°

∴∠ABC'=90°

由勾股定理得:AC'=

PA+PB+PC=PA+PP'+P'C'=AC'=

則點P到這個三角形各頂點的距離之和的最小值為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數;

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是,先將向上平移3個單位長度,再向右平移2個單位長度,得到.

(1)在圖中畫出

(2)點的坐標分別為______、______;

(3)若軸有一點,使面積相等,求出點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】天水某公交公司將淘汰某一條線路上冒黑煙較嚴重的公交車,計劃購買A型和B型兩行環保節能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,

1)求購買A型和B型公交車每輛各需多少萬元?

2)預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A1-4),B3-3),C1-1).

1)將ABC先向上平移5個單位,再向左平移3個單位,畫出平移后得到的A1B1C1

2)寫出A1B1C1各頂點的坐標;

3)若ABC內有一點Pab),請寫出平移后得到的對應點P1的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】媒體報道,近期“手足口病”可能進入發病高峰期,某校根據《學校衛生工作條例》,為預防“手足口病”,對教室進行“薰藥消毒”.已知藥物在燃燒及釋放過程中,室內空氣中每立方米含藥量y(毫克)與燃燒時間x(分鐘)之間的關系如圖所

示(即圖中線段OA和雙曲線在A點及其右側的部分),根據圖象所示信息,解答下列問題:

(1)寫出從藥物釋放開始,y與x之間的函數關系式及自變量的取值范圍;

(2)據測定,當空氣中每立方米的含藥量低于2毫克時,對人體無毒害作用,那么從消毒開始,至少在多長時間內,師生不能進入教室?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線lx軸和y軸于點AB,反比例函數y=x0)的圖象于點C,過點Cy軸的平行線交x軸于點D,過點Bx軸的平行線交反比例函數y=-x0)的圖象于點E,則圖中陰影部分的總面積為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,第一象限內的點AB在反比例函數的圖象上,點Cy軸上,BCx軸,點A的坐標為(24),且tanACB=

求:(1)反比例函數的解析式;

2)點C的坐標;

3ABC的余弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P為線段AB上的一個點,分別以APPB為邊在AB的同側作菱形APCD和菱形PBFE,點PCE在一條直線上。若∠DAP=60°AP2+3PB2=1 MN分別是對角線ACBE的中點. MN長為

A. B. C. 1D. 4

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月婷婷中文字幕 | 日产av在线| 精品久久免费视频 | 国产精品aaa | 好吊视频一区二区三区四区 | 精品91| 99精品久久久久久中文字幕 | 国产在线一区二区三区 | 欧美精品系列 | 嫩草一区 | 国产一级片免费 | 国产精品视屏 | a级片免费观看 | 成人在线黄色 | 中文字幕一区二区在线播放 | 精品视频在线播放 | 小镇姑娘国语版在线观看免费 | 激情做爰呻吟视频舌吻 | 日韩精品在线一区二区 | 亚洲三级小说 | 久久精品一区二区三区四区五区 | 免费色片 | 欧美性猛交xxxx黑人猛交 | 日韩精品久久 | 日本三级大片 | 国产传媒视频在线观看 | 五月天一区二区三区 | 综合久久久久 | 欧美一级日韩一级 | av在线播放不卡 | 成人免费福利视频 | 国产又猛又黄又爽 | 国产二区三区 | 色综合久久久久 | 青青草免费在线 | 日韩欧美综合 | 九九久久精品视频 | 91在线一区 | 亚洲国产精品av | 国产高清免费视频 | 黄色一级大片在线免费看国产一 |