【題目】如圖,△ACE是以ABCD的對角線AC為邊的等邊三角形,點C與點E關(guān)于x軸對稱.若E點的坐標(biāo)是(7,﹣3 ),則D點的坐標(biāo)是 .
【答案】(5,0)
【解析】解:∵點C與點E關(guān)于x軸對稱,E點的坐標(biāo)是(7,﹣3 ), ∴C的坐標(biāo)為(7,3
),
∴CH=3 ,CE=6
,
∵△ACE是以ABCD的對角線AC為邊的等邊三角形,
∴AC=6 ,
∴AH=9,
∵OH=7,
∴AO=DH=2,
∴OD=5,
∴D點的坐標(biāo)是(5,0),
所以答案是(5,0).
【考點精析】通過靈活運用等邊三角形的性質(zhì)和平行四邊形的性質(zhì),掌握等邊三角形的三個角都相等并且每個角都是60°;平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AC∥BD,直線AB,CD不平行,點P在直線AB上,且和點A,B不重合.
(1)如圖①,當(dāng)點P在線段AB上時,若∠PAC=20°,∠PDB=30°,求∠CPD的度數(shù);
(2)當(dāng)點P在A,B兩點之間運動時,∠PCA,∠PDB,∠CPD之間滿足什么樣的等量關(guān)系?(直接寫出答案)
(3)如圖②,當(dāng)點P在線段AB延長線運動時,∠PCA,∠PDB,∠CPD之間滿足什么樣的等量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格圖中建立平面直角坐標(biāo)系, 的頂點坐標(biāo)為
、
、
.
(1)若將向右平移3個單位長度,再向上平移1個單位長度,請畫出平移后的
;
(2)畫出繞C1順時針方向旋轉(zhuǎn)900后得到的
;
(3)與
是中心對稱圖形,請寫出對稱中心的坐標(biāo): ;并計算
的面積: .
(4)在坐標(biāo)軸上是否存在P點,使得△PAB與△CAB的面積相等,若有,則求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”
(1)概念理解:
請你根據(jù)上述定義舉一個等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點A(-3,4)、B(-3,0)、C(-1,0) .以D為頂點的拋物線y = ax2+bx+c過點B. 動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點P、Q運動的速度均為每秒1個單位,運動的時間為t秒. 過點P作PE⊥CD交BD于點E,過點E作EF⊥AD于點F,交拋物線于點G.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時,四邊形BDGQ的面積最大?最大值為多少?
(3)動點P、Q運動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點H,使以B,Q,E,H為頂點的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com