【題目】現有一組有規律排列的數:1、﹣1、、﹣
、
、﹣
、1、﹣1、
、﹣
、
、﹣
…其中,1、﹣1、
、﹣
、
、﹣
這六個數按此規律重復出現,問:
(1)第50個數是什么數?
(2)把從第1個數開始的前2017個數相加,結果是多少?
(3)從第1個數起,把連續若干個數的平方加起來,如果和為520,則共有多少個數的平方相加?
【答案】(1) 第50個數是﹣1 (2) 1 (3) 261個
【解析】
(1)首先根據這列數的排列規律,可得每6個數一個循環:1、﹣1、、﹣
、
、﹣
;然后用50除以6,根據余數的情況判斷出第50個數是什么數即可;
(2)首先用2017除以6,求出一共有多少個循環,以及剩下的數是多少;然后用循環的個數乘以1+(﹣1)++(﹣
)+(
)+(﹣
),再加上剩下的數,即可得出結論;
(3)首先求出1、﹣1、、﹣
、
、﹣
六個數的平方和是多少;然后用520除以六個數的平方和,根據商和余數的情況,判斷出一共有多少個數的平方相加即可.
(1)這列數每6個數一個循環:1、﹣1、、﹣
、
、﹣
;
∵50÷6=8…2,∴第50個數是﹣1.
(2)∵2017÷6=336…1,1+(﹣1)++(﹣
)+(
)+(﹣
)=0,∴從第1個數開始的前2017個數的和是: 336×0+1=1.
(3)∵=12,520÷12=43…4,而且
,∴43×6+3=261,即共有261個數的平方相加.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點,以C為圓心,4cm長為半徑作圓,則A,B,C,D四點中,在圓內的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:()﹣2﹣
+(
﹣4)0﹣
cos45°.
【答案】1
【解析】試題分析:把原式的第一項根據負整數指數冪的意義化簡,第二項根據算術平方根的定義求出9的算術平方根,第三項根據零指數公式化簡,最后一項利用特殊角的三角函數值化簡,合并后即可求出值.
試題解析:原式=4﹣3+1﹣
=2﹣1
=1.
【題型】解答題
【結束】
16
【題目】《九章算術》“勾股”章有一題:“今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何”.大意是說,已知甲、乙二人同時從同一地
點出發,甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+2x+m.
(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數圖象的對稱軸交于點P,求點P的坐標.
(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是( )
①AD是∠BAC的平分線 ②∠ADC=60°
③點D在AB的垂直平分線上 ④AB=2AC.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,FC⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A、B、O為旋轉中心順時針旋轉,分別得到圖②、圖③、…,則旋轉得到的圖⑩的直角頂點的坐標為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com