D
分析:由C為弧EB的中點,利用垂徑定理的逆定理得出OC垂直于BE,由AB為圓的直徑,利用直徑所對的圓周角為直角得到AE垂直于BE,即可確定出OC與AE平行,選項A正確;
由C為弧BE中點,即弧BC=弧CE,利用等弧對等弦,得到BC=EC,選項B正確;
由AD為圓的切線,得到AD垂直于OA,進而確定出一對角互余,再由直角三角形ABE中兩銳角互余,利用同角的余角相等得到∠DAE=∠ABE,選項C正確;
AC不一定垂直于OE,選項D錯誤.
解答:A、∵點C是

的中點,
∴OC⊥BE,
∵AB為圓O的直徑,
∴AE⊥BE,
∴OC∥AE,本選項正確;
B、∵

=

,
∴BC=CE,本選項正確;
C、∵AD為圓O的切線,
∴AD⊥OA,
∴∠DAE+∠EAB=90°,
∵∠EBA+∠EAB=90°,
∴∠DAE=∠EBA,本選項正確;
D、AC不一定垂直于OE,本選項錯誤,
故選D
點評:此題考查了切線的性質,圓周角定理,以及圓心角,弧及弦之間的關系,熟練掌握切線的性質是解本題的關鍵.