日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
有這樣一道習題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.
請探究下列變化:
變化一:交換題設與結論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運動探究:
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,原題中的結論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點,請你根據原題中的條件完成圖4,并判斷結論是否還成立?(只需交待判斷)

【答案】分析:原命題的證明:連接OQ,利用RQ為⊙O的切線,得出∠OQB+∠PQR=90°,根據半徑OB=OQ及OA⊥OB,得出∠OQB=∠OBQ,∠OBQ+∠BPO=90°,從而得∠PQR=∠QPR,證明結論;
變化一的證明:與原命題的證明過程相反,由RP=RQ,可知∠PQR=∠QPR=∠BPO,再利用互余關系將角進行轉化,證明∠OQB+∠PQR=90°,即∠OQR=90°即可;
變化二的證明:連接OQ,仿照原命題的證明方法進行.
解答:證明:連接OQ,
∵RQ為⊙O的切線,
∴∠OQR=∠OQB+∠PQR=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠PQR=∠BPO,
而∠BPO=∠QPR,
∴∠PQR=∠QPR,
∴RP=RQ;
變化一:
證明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠OQB+∠PQR=90°,即∠OQR=90°,
∴RQ為⊙O的切線;
變化二.
(1)若OA向上平移,變化一中的結論還成立;
(2)原題中的結論還成立.

理由:連接OQ,
∵RQ為⊙O的切線,
∴∠OQR=90°,∠BQO+∠RQP=90°,
又∵OB=OQ,OA⊥OB,
∴∠OQB=∠OBQ,∠OBQ+∠BPO=90°,
∴∠RQP=∠BPO,
∴RP=RQ;
(3)原題中的結論還成立,如圖.

點評:本題考查了切線的判定與性質.關鍵是利用圓中的等腰三角形,對頂角相等,互余關系的角證明角相等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、有這樣一道習題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.
請探究下列變化:
變化一:交換題設與結論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運動探究:
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,原題中的結論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點,請你根據原題中的條件完成圖4,并判斷結論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數學 來源:河南省期末題 題型:證明題

有這樣一道習題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ. 請探究下列變化:
變化一:交換題設與結論. 已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ. 求證:RQ為⊙O的切線.
變化二:運動探究:
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,原題中的結論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點,請你根據原題中的條件完成圖4,并判斷結論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數學 來源:2011-2012學年新人教版九年級(上)期中目標檢測數學試卷(三)(解析版) 題型:解答題

有這樣一道習題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.
請探究下列變化:
變化一:交換題設與結論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運動探究:
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,原題中的結論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點,請你根據原題中的條件完成圖4,并判斷結論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數學 來源:2010-2011學年江蘇省泰州市興化市海河學校九年級(上)期末數學試卷(解析版) 題型:解答題

有這樣一道習題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.
請探究下列變化:
變化一:交換題設與結論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運動探究:
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,原題中的結論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點,請你根據原題中的條件完成圖4,并判斷結論是否還成立?(只需交待判斷)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 蜜臀网| 精品国产一区二区三区四区 | 日韩精品在线观看视频 | 精品一区免费 | 亚洲一区二区三区在线播放 | 久久久久国产精品视频 | 亚洲福利一区 | 亚洲三级网站 | www.久久| 成人av网址大全 | 久久久久久毛片免费观看 | 免费在线一区二区 | 亚洲视频一区在线 | 一区二区三区视频 | 97国产一区二区精品久久呦 | 久久不射电影网 | 99精品国产99久久久久久福利 | 日本免费一区二区三区 | 亚洲视频区 | 午夜成人在线视频 | 成人三级免费 | 亚洲国产精品人人爽夜夜爽 | 亚洲精品在线免费 | 日本一区二区精品 | 在线看亚洲 | 日本在线色 | 久久国产经典视频 | 中文字幕第一区 | 亚洲国产成人综合 | 亚洲 中文 欧美 日韩 在线观看 | 日韩精品一区二区三区中文字幕 | 欧美午夜视频 | 成人欧美一区二区三区色青冈 | 欧美成人在线网站 | 久久久久久久久成人 | 有码在线 | 日韩av高清在线观看 | 中文字幕avav | 欧美日韩大片在线观看 | 91精品国产综合久久婷婷香蕉 | 国产精品8888 |