【題目】端午節當天,小明帶了四個粽子(除味道不同外,其它均相同),其中兩個是大棗味的,另外兩個是火腿味的,準備按數量平均分給小紅和小剛兩個好朋友.
(1)請你用樹狀圖或列表的方法表示小紅拿到的兩個粽子的所有可能性.
(2)請你計算小紅拿到的兩個粽子剛好是同一味道的概率.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數y= 的圖象恰好經過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將△ABC沿BC方向平移,使點B移到點C,得到△DCE.
(1)求證:△ACD≌△EDC;
(2)請探究△BDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC位于第二象限,點A的坐標是(﹣2,3),先把△ABC向右平移4個單位長度得到△A1B1C1 , 再作與△A1B1C1關于x軸對稱的△A2B2C2 , 則點A的對應點A2的坐標是( )
A.(﹣3,2)
B.(2,﹣3)
C.(1,﹣2)
D.(﹣1,2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+3經過點A(1,0)和點B(5,0).
(1)求該拋物線所對應的函數解析式;
(2)該拋物線與直線y= x+3相交于C、D兩點,點P是拋物線上的動點且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點M、N.
①連結PC、PD,如圖1,在點P運動過程中,△PCD的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;
②連結PB,過點C作CQ⊥PM,垂足為點Q,如圖2,是否存在點P,使得△CNQ與△PBM相似?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面的統計圖反映了我國與“一帶一路”沿線部分地區的貿易情況. 2011﹣2016年我國與東南亞地區和東歐地區的貿易額統計圖
(以上數據摘自《“一帶一路”貿易合作大數據報告(2017)》)
根據統計圖提供的信息,下列推理不合理的是( )
A.與2015年相比,2016年我國與東歐地區的貿易額有所增長
B.2011﹣2016年,我國與東南亞地區的貿易額逐年增長
C.2011﹣2016年,我國與東南亞地區的貿易額的平均值超過4200億美元
D.2016年我國與東南亞地區的貿易額比我國與東歐地區的貿易額的3倍還多
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數y= (x>0)的圖象與直線y=x﹣2交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于x軸的直線,交直線y=x﹣2于點M,過點P作平行于y軸的直線,交函數y= (x>0)的圖象于點N. ①當n=1時,判斷線段PM與PN的數量關系,并說明理由;
②若PN≥PM,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形,它的面積S可用公式S=a+ b﹣1(a是多邊形內的格點數,b是多邊形邊界上的格點數)計算,這個公式稱為“皮克定理”.現用一張方格紙共有200個格點,畫有一個格點多邊形,它的面積S=40.
(1)這個格點多邊形邊界上的格點數b=(用含a的代數式表示).
(2)設該格點多邊形外的格點數為c,則c﹣a= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,點E在邊AD上,CE與BD相交于點F,AD=4,AB=5,BC=BD=6,DE=3.
(1)求證:△DFE∽△DAB;
(2)求線段CF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com